1
|
Maiti S, Parui N, Halder J, Dash J. Synthesis of triazole-fused tetracyclic spirooxindole derivatives via metal-free Huisgen cycloaddition. Chem Commun (Camb) 2024; 60:10009-10012. [PMID: 39177038 DOI: 10.1039/d4cc02534b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We report an efficient, metal free method for synthesizing tetracyclic spirooxindole derivatives from N-protected isatins and propargyl bromide via Huisgen cycloaddition. This simple and practicle method provides access to spirooxindoles containing five-, six-, or seven-membered rings fused to a triazole ring.
Collapse
Affiliation(s)
- Sandip Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Nabin Parui
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Joydev Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| |
Collapse
|
2
|
Islam MS, Al-Jassas RM, Al-Majid AM, Haukka M, Nafie MS, Abu-Serie MM, Teleb M, El-Yazbi A, Alayyaf AMA, Barakat A, Shaaban MM. Exploiting spirooxindoles for dual DNA targeting/CDK2 inhibition and simultaneous mitigation of oxidative stress towards selective NSCLC therapy; synthesis, evaluation, and molecular modelling studies. RSC Med Chem 2024; 15:2937-2958. [PMID: 39149093 PMCID: PMC11324055 DOI: 10.1039/d4md00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
The unique structure of spirooxindoles and their ability to feature various pharmacophoric motifs render them privileged scaffolds for tailoring new multitarget anticancer agents. Herein, a stereoselective multicomponent reaction was utilized to generate a small combinatorial library of pyrazole-tethered spirooxindoles targeting DNA and CDK2 with free radical scavenging potential as an extra bonus. The designed spirooxindoles were directed to combat NSCLC via inducing apoptosis and alleviating oxidative stress. The series' absolute configuration was assigned by X-ray diffraction analysis. Cytotoxicity screening of the developed spirooxindoles against NSCLC A549 and H460 cells compared to normal lung fibroblasts Wi-38 revealed the sensitivity of A549 cells to the compounds and raised 6e and 6h as the study hits (IC50 ∼ 0.09 μM and SI > 3). They damaged DNA at 24.6 and 35.3 nM, and surpassed roscovitine as CDK2 inhibitors (IC50 = 75.6 and 80.2 nM). Docking and MDs simulations postulated their receptors binding modes. The most potent derivative, 6e, induced A549 apoptosis by 40.85% arresting cell cycle at G2/M phase, and exhibited antioxidant activity in a dose-dependent manner compared to Trolox as indicated by DPPH scavenging assay. Finally, in silico ADMET analysis predicted the drug-likeness properties of 6e.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Refaah M Al-Jassas
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah (P.O. Box 27272) United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Amira El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | | | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| |
Collapse
|
3
|
Dahab MA, Mahdy HA, Elkady H, Taghour MS, Elwan A, Elkady MA, Elsakka EGE, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Semi-synthesized anticancer theobromine derivatives targeting VEGFR-2: in silico and in vitro evaluations. J Biomol Struct Dyn 2024; 42:4214-4233. [PMID: 37261471 DOI: 10.1080/07391102.2023.2219333] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Computer aided drug discovery (CADD) of a thieno[2,3- d]pyrimidine derivative as a new EGFR inhibitor targeting the ribose pocket. J Biomol Struct Dyn 2024; 42:2369-2391. [PMID: 37129193 DOI: 10.1080/07391102.2023.2204500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Depending on the pharmacophoric characteristics of EGFR inhibitors, a new thieno[2,3-d]pyrimidine derivative has been developed. Firstly, the potential inhibitory effect of the designed compound against EGFR has been proven by docking experiments that showed correct binding modes and excellent binding energies of -98.44 and -88.00 kcal/mol, against EGFR wild-type and mutant type, respectively. Furthermore, MD simulations studies confirmed the precise energetic, conformational, and dynamic alterations that occurred after binding to EGFR. The correct binding was also confirmed by essential dynamics studies. To further investigate the general drug-like properties of the developed candidate, in silico ADME and toxicity studies have also been carried out. The thieno[2,3-d]pyrimidine derivative was synthesized following the earlier promising findings. Fascinatingly, the synthesized compound (4) showed promising inhibitory effects against EGFRWT and EGFRT790M with IC50 values of 25.8 and 182.3 nM, respectively. Also, it exhibited anticancer potentialities against A549 and MCF-7cell lines with IC50 values of 13.06 and 20.13 µM, respectively. Interestingly, these strong activities were combined with selectivity indices of 2.8 and 1.8 against the two cancer cell lines, respectively. Further investigations indicated the ability of compound 4 to arrest the cancer cells' growth at the G2/M phase and to increase early and late apoptosis percentages from 2.52% and 2.80 to 17.99% and 16.72%, respectively. Additionally, it was observed that compound 4 markedly increased the levels of caspase-3 and caspase-9 by 4 and 3-fold compared to the control cells. Moreover, it up-regulated the level of BAX by 3-fold and down-regulated the level of Bcl-2 by 3-fold affording a BAX/Bcl-2 ratio of 9.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin-Elkom, Menoufia, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Nafie MS, Al-Majid AM, Ali M, Alayyaf AA, Haukka M, Ashraf S, Ul-Haq Z, El-Faham A, Barakat A. Exploring pyrrolidinyl-spirooxindole natural products as promising platforms for the synthesis of novel spirooxindoles as EGFR/CDK2 inhibitors for halting breast cancer cells. Front Chem 2024; 12:1364378. [PMID: 38487783 PMCID: PMC10937419 DOI: 10.3389/fchem.2024.1364378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Cancer represents a global challenge, and the pursuit of developing new cancer treatments that are potent, safe, less prone to drug resistance, and associated with fewer side effects poses a significant challenge in cancer research and drug discovery. Drawing inspiration from pyrrolidinyl-spirooxindole natural products, a novel series of spirooxindoles has been synthesized through a one-pot three-component reaction, involving a [3 + 2] cycloaddition reaction. The cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231) and safety profile against WISH cells of the newly developed library were assessed using the MTT assay. Compounds 5l and 5o exhibited notable cytotoxicity against MCF-7 cells (IC50 = 3.4 and 4.12 μM, respectively) and MDA-MB-231 cells (IC50 = 8.45 and 4.32 μM, respectively) compared to Erlotinib. Conversely, compounds 5a-f displayed promising cytotoxicity against MCF-7 cells with IC50 values range (IC50 = 5.87-18.5 μM) with selective activity against MDA-MB-231 cancer cells. Compound 5g demonstrated the highest cytotoxicity (IC50 = 2.8 μM) among the tested compounds. Additionally, compounds 5g, 5l, and 5n were found to be safe (non-cytotoxic) against WISH cells with higher IC50 values ranging from 39.33 to 47.2 μM. Compounds 5g, 5l, and 5n underwent testing for their inhibitory effects against EGFR and CDK-2. Remarkably, they demonstrated potent EGFR inhibition, with IC50 values of 0.026, 0.067, and 0.04 μM and inhibition percentages of 92.6%, 89.8%, and 91.2%, respectively, when compared to Erlotinib (IC50 = 0.03 μM, 95.4%). Furthermore, these compounds exhibited potent CDK-2 inhibition, with IC50 values of 0.301, 0.345, and 0.557 μM and inhibition percentages of 91.9%, 89.4%, and 88.7%, respectively, in contrast to Roscovitine (IC50 = 0.556 μM, 92.1%). RT-PCR analysis was performed on both untreated and 5g-treated MCF-7 cells to confirm apoptotic cell death. Treatment with 5g increased the gene expression of pro-apoptotic genes P53, Bax, caspases 3, 8, and 9 with notable fold changes while decreasing the expression of the anti-apoptotic gene Bcl-2. Molecular docking and dynamic simulations (100 ns simulation using AMBER22) were conducted to investigate the binding mode of the most potent candidates, namely, 5g, 5l, and 5n, within the active sites of EGFR and CDK-2.
Collapse
Affiliation(s)
- Mohamed S. Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | | | - M. Ali
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Helal MH, Owda ME, Mogharbel AT, Hamzah Alessa A, Omer N, Abdelaziz MA, Ibrahim I, Eliwa EM. C 3-Spirooxindoles: Divergent chemical synthesis and bioactivities (2018-2023). Bioorg Chem 2024; 143:107091. [PMID: 38183683 DOI: 10.1016/j.bioorg.2023.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.
Collapse
Affiliation(s)
- Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, 91911, PO 840, Saudi Arabia
| | - Medhat E Owda
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Amal T Mogharbel
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Ali Hamzah Alessa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Islam Ibrahim
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Essam M Eliwa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt; Institute of Chemistry of Strasbourg, UMR 7177-LCSOM, CNRS, Strasbourg University, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Zhao H, Zhao Y. Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions-Easy Access to Structural Diversity. Molecules 2023; 28:6488. [PMID: 37764264 PMCID: PMC10536439 DOI: 10.3390/molecules28186488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
8
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk BA, Ibrahim IM, Metwaly AM, Eissa IH. A novel thieno[2,3-d]pyrimidine derivative inhibiting vascular endothelial growth factor receptor-2: A story of computer-aided drug discovery. Drug Dev Res 2023; 84:1247-1265. [PMID: 37232504 DOI: 10.1002/ddr.22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Following the pharmacophoric features of vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors, a novel thieno[2,3-d]pyrimidine derivative has been designed and its activity against VEGFR-2 has been demonstrated by molecular docking studies that showed an accurate binding mode and an excellent binding energy. Furthermore, the recorded binding was confirmed by a series of molecular dynamics simulation studies, which also revealed precise energetic, conformational, and dynamic changes. Additionally, molecular mechanics with generalized Born and surface area solvation and polymer-induced liquid precursors studies were conducted and verified the results of the MD simulations. Next, in silico absorption, distribution, metabolism, excretion, and toxicity studies have also been conducted to examine the general drug-like nature of the designed candidate. According to the previous results, the thieno[2,3-d]pyrimidine derivative was synthesized. Fascinatingly, it inhibited VEGFR-2 (IC50 = 68.13 nM) and demonstrated strong inhibitory activity toward human liver (HepG2), and prostate (PC3) cell lines with IC50 values of 6.60 and 11.25 µM, respectively. As well, it was safe and showed a high selectivity index against normal cell lines (WI-38). Finally, the thieno[2,3-d]pyrimidine derivative arrested the growth of the HepG2 cells at the G2/M phase inducing both early and late apoptosis. These results were further confirmed through the ability of the thieno[2,3-d]pyrimidine derivative to induce significant changes in the apoptotic genes levels of caspase-3, caspase-9, Bcl-2 associated X-protein, and B-cell lymphoma 2.
Collapse
Affiliation(s)
- Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Shibin-Elkom, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Elbatrawy OR, Hagras M, El Deeb MA, Agili F, Hegazy M, El-Husseiny AA, Mokhtar MM, Elkhawaga SY, Eissa IH, El-Kalyoubi S. Discovery of New Uracil and Thiouracil Derivatives as Potential HDAC Inhibitors. Pharmaceuticals (Basel) 2023; 16:966. [PMID: 37513878 PMCID: PMC10384246 DOI: 10.3390/ph16070966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Histone deacetylase inhibitors (HDACIs) are a relatively new class of potential drugs for treating cancer. Aim: Discovery of new anticancer agents targeting HDAC. Methods: New uracil and thiouracil derivatives panels were designed and synthesized as HDAC inhibitors. The synthesized compounds were tested against MCF-7, HepG2, and HCT-116. HDAC1 and HDAC4 inhibitory activities of these compounds were tested. The most active member was tested for its potential against cell cycle, apoptosis, caspase-3, and caspase-8. Docking studies were carried out against HDAC1. Results: Compounds 5a, 5b, 5f, 5i, 5k, and 5m exhibited promising cytotoxic activities. HDAC1 and HDAC4 inhibitory activities of these compounds were tested. Regarding the HDAC1 inhibitory activity, compound 5m was the most potent member (IC50 = 0.05 µg/mL) compared to trichostatin A (IC50 = 0.0349 µg/mL). For HDAC4, compound 5m showed superior activity (IC50 = 2.83 µg/mL) than trichostatin A (IC50 = 3.349 µg/mL). Compound 5m showed a high potential to arrest the HCT116 cell cycle at the G0-G1 phase. In addition, it showed an almost 17 times apoptotic effect (37.59%) compared to the control cells (2.17%). Furthermore, Compound 5m showed significant increases in the levels of caspase-3 and caspase-8. Finally, the uracil and thiouracil derivatives showed accepted binding mods against HDAC. Conclusions: Compound 5m has potential anticancer activity targeting HDAC with a significant apoptotic effect.
Collapse
Affiliation(s)
- Omnia R Elbatrawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11823, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Moshira A El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11823, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
10
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Discovery of new thieno[2,3- d]pyrimidines as EGFR tyrosine kinase inhibitors for cancer treatment. Future Med Chem 2023; 15:1167-1184. [PMID: 37529910 DOI: 10.4155/fmc-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background: EGFR has been considered a vital molecular target in cancer management. Aim: The discovery of new thieno[2,3-d]pyrimidine derivatives as EGFR tyrosine kinase inhibitors. Methods: Nine derivatives were designed, synthesized and subjected to in vitro and in silico studies. Results: Compound 7a significantly inhibited the growth of HepG2 and PC3 cells for both EGFR wild-type and EGFRT790M. Compound 7a caused a significant apoptotic effect, arresting HepG2 cells' growth in the S and G2/M phases. Docking and molecular dynamics simulation studies confirmed the correct and stable binding modes of the synthesized compounds against the active sites. Conclusion: Compound 7a is a promising dual EGFR inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Eman A Sobh
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy & Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering & Biotechnology Research Institute, City of Scientific Research & Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
11
|
Mahdy HA, Elkady H, Taghour MS, Elwan A, Dahab MA, Elkady MA, Elsakka EG, Elkaeed EB, Alsfouk BA, Ibrahim IM, Eissa IH, Metwaly AM. New theobromine derivatives inhibiting VEGFR-2: design, synthesis, antiproliferative, docking and molecular dynamics simulations. Future Med Chem 2023; 15:1233-1250. [PMID: 37466069 DOI: 10.4155/fmc-2023-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Background: VEGFR-2 is one of the most effective targets in cancer treatment. Aim: The design and semi-synthesis of new theobromine derivatives as potential VEGFR-2 inhibitors. Methods: In vitro and in silico evaluation of the synthesized compounds. Results: Compound 5b demonstrated excellent antiproliferative and VEGFR-2 inhibitory effects with significant apoptotic activity. It modulated the immune response by increasing IL-2 and reducing TNF-α levels. Docking and molecular dynamics simulations revealed the compound's binding affinity with VEGFR-2. Lastly, computational absorption, distribution, metabolism, excretion and toxicity studies indicated the high potential of compound 5b for drug development. Conclusion: Compound 5b could be a promising anticancer agent targeting VEGFR-2.
Collapse
Affiliation(s)
- Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed A Elkady
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Elsayed Ge Elsakka
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy & Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering & Biotechnology Research Institute, City of Scientific Research & Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| |
Collapse
|
12
|
Elbatrawy OR, El Deeb MA, Hagras M, Agili F, Hegazy M, El-Husseiny AA, Elkady MA, Eissa IH, El-Kalyoubi S. New thiouracil derivatives as histone deacetylase inhibitors and apoptosis inducers: design, synthesis and anticancer evaluation. Future Med Chem 2023; 15:1019-1035. [PMID: 37492951 DOI: 10.4155/fmc-2023-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Background: Histone deacetylase (HDAC) inhibitors have good contributions in cancer management. Aim: To introduce new active HDAC inhibitors. Methods: Design and synthesis of 16 thiouracil derivatives with deep biological and computational investigation. Results: Compounds 7a, 7c, 7d, 7e, 8a and 8f showed the highest antiproliferative effects against MCF7, HepG2 and HCT116 cell lines. Compound 7e exhibited the highest activities against HDAC1 and HDAC4. Compound 7e arrested the cell cycle of HCT116 cells at G0-G1 with significant apoptotic effect. In addition, treatment with compound 7e was associated with a significant increase in the levels of caspase-3 and caspase-8. The docking studies gave good insight about the binding patterns of the synthesized compounds against HDAC1. Conclusion: Compound 7e has a promising anticancer activity targeting HDAC.
Collapse
Affiliation(s)
- Omnia R Elbatrawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Moshira A El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan, 82621, Saudi Arabia
| | - Maghawry Hegazy
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, 42511, Port Said, Egypt
| |
Collapse
|
13
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
14
|
Asif M, Aqil F, Alasmary FA, almalki AS, Khan AR, Nasibullah M. Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Wang Y, Yan L, Yan Y, Li S, Lu H, Liu J, Dong J. Dipolarophile-Controlled Regioselective 1,3-Dipolar Cycloaddition: A Switchable Divergent Access to Functionalized N-Fused Pyrrolidinyl Spirooxindoles. Int J Mol Sci 2023; 24:ijms24043771. [PMID: 36835183 PMCID: PMC9966135 DOI: 10.3390/ijms24043771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
N-fused pyrrolidinyl spirooxindole belongs to a class of privileged heterocyclic scaffolds and is prevalent in natural alkaloids and synthetic pharmaceutical molecules. To realize the switchable synthesis of divergent N-fused pyrrolidinyl spirooxindoles for further biological activity evaluation via a substrate-controlled strategy, a chemically sustainable, catalysis-free, and dipolarophile-controlled three-component 1,3-dipolar cycloaddition of isatin-derived azomethine ylides with diverse dipolarophiles is described in this work. A total of 40 functionalized N-fused pyrrolidinyl spirooxindoles were synthesized in 76-95% yields with excellent diastereoselectivities (up to >99:1 dr). The scaffolds of these products can be well-controlled by employing different 1,4-enedione derivatives as dipolarophiles in EtOH at room temperature. This study provides an efficient strategy to afford a spectrum of natural-like and potentially bioactive N-fused pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
- Correspondence: or (Y.W.); (J.D.)
| | - Lijun Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Yuxin Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Sujin Li
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Hongying Lu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jia Liu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jianwei Dong
- Colleage of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
- Correspondence: or (Y.W.); (J.D.)
| |
Collapse
|
16
|
Gaber AA, Sobhy M, Turky A, Eldehna WM, El-Sebaey SA, El-Metwally SA, El-Naggar AM, Ibrahim IM, Elkaeed EB, Metwaly AM, Eissa IH. New [1,2,4]triazolo[4,3-c]quinazolines as intercalative Topo II inhibitors: Design, synthesis, biological evaluation, and in silico studies. PLoS One 2023; 18:e0274081. [PMID: 36716311 PMCID: PMC9886266 DOI: 10.1371/journal.pone.0274081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023] Open
Abstract
Fifteen quinazoline derivatives were designed and synthesized as DNA intercalators. The cytotoxicity of the designed members was assessed against HCT-116 and HepG2 cancer cell lines. In addition, the topoisomerase II (Topo II) inhibitory effect was assessed. Compound 16 was the most cytotoxic and Topo II inhibitor with low cytotoxicity against Vero cells. Compounds 16, 17, and 18 showed significant DNA binding affinities. Compound 16 showed Topo II catalytic inhibitory effect at a concentration of 10 μM. Further mechanistic investigations revealed the capability of compound 16 to induce apoptosis in HCT-116 cells and arrest the growth at the S and G2/M phases. Also, compound 16 showed a significant increase in the level of BAX (2.18-fold) and a marked decrease in the level of Bcl-2 (1.9-fold) compared to the control cells. In silico studies revealed the ability of the synthesized members to bind to the DNA-Topo II complex.
Collapse
Affiliation(s)
- Ahmed A. Gaber
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Sobhy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samiha A. El-Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Souad A. El-Metwally
- Department of Basic Science, Higher Technological institute, 10th of Ramadan City, Egypt
| | - Abeer M. El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University, Abassia, Cairo, Egypt
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Panda SS, Girgis AS, Aziz MN, Bekheit MS. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020618. [PMID: 36677676 PMCID: PMC9861573 DOI: 10.3390/molecules28020618] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Spirooxindoles occupy an important place in heterocyclic chemistry. Many natural spirooxindole-containing compounds have been identified as bio-promising agents. Synthetic analogs have also been synthesized utilizing different pathways. The present article summarizes the recent development of both natural and synthetic spirooxindole-containing compounds prepared from isatin or its derivatives reported in the last five years. The spirooxindoles are categorized based on their mentioned biological properties.
Collapse
Affiliation(s)
- Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence: or
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marian N. Aziz
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
18
|
Taghour MS, Mahdy HA, Gomaa MH, Aglan A, Eldeib MG, Elwan A, Dahab MA, Elkaeed EB, Alsfouk AA, Khalifa MM, Eissa IH, Elkady H. Benzoxazole derivatives as new VEGFR-2 inhibitors and apoptosis inducers: design, synthesis, in silico studies, and antiproliferative evaluation. J Enzyme Inhib Med Chem 2022; 37:2063-2077. [PMID: 35875937 PMCID: PMC9327782 DOI: 10.1080/14756366.2022.2103552] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 μM and 15.21 μM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.
Collapse
Affiliation(s)
- Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Maher H Gomaa
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Aglan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
19
|
Eldehna WM, Taghour MS, Al-Warhi T, Nocentini A, Elbadawi MM, Mahdy HA, Abdelrahman MA, Alotaibi OJ, Aljaeed N, Elimam DM, Afarinkia K, Abdel-Aziz HA, Supuran CT. Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. J Enzyme Inhib Med Chem 2022; 37:531-541. [PMID: 34991416 PMCID: PMC8745369 DOI: 10.1080/14756366.2021.2024528] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Different 2,4-thiazolidinedione-tethered coumarins 5a-b, 10a-n and 11a-d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a-c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a-c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Mostafa M. Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ohoud J. Alotaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaaeldin M. Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
20
|
Regioselective synthesis of spirooxindole-pyrolidine via (GAP) chemistry process: Experimental and DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Elkady H, Elwan A, El-Mahdy HA, Doghish AS, Ismail A, Taghour MS, Elkaeed EB, Eissa IH, Dahab MA, Mahdy HA, Khalifa MM. New benzoxazole derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: design, synthesis, anti-proliferative evaluation, flowcytometric analysis, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:397-410. [PMID: 34961427 PMCID: PMC8725875 DOI: 10.1080/14756366.2021.2015343] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.
Collapse
Affiliation(s)
- Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed S. Doghish
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed A. Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A. Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Hagras M, Saleh MA, Ezz Eldin RR, Abuelkhir AA, Khidr EG, El-Husseiny AA, El-Mahdy HA, Elkaeed EB, Eissa IH. 1,3,4-Oxadiazole-naphthalene hybrids as potential VEGFR-2 inhibitors: design, synthesis, antiproliferative activity, apoptotic effect, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:380-396. [PMID: 34923885 PMCID: PMC8725909 DOI: 10.1080/14756366.2021.2015342] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
In the current work, some 1,3,4-oxadiazole-naphthalene hybrids were designed and synthesised as VEGFR-2 inhibitors. The synthesised compounds were evaluated in vitro for their antiproliferative activity against two human cancer cell lines namely, HepG-2 and MCF-7. Compounds that exhibited promising cytotoxicity (5, 8, 15, 16, 17, and 18) were further evaluated for their VEGFR-2 inhibitory activities. Compound 5 showed good antiproliferative activity against both cell lines and inhibitory effect on VEGFR-2. Besides, it induced apoptosis by 22.86% compared to 0.51% in the control (HepG2) cells. This apoptotic effect was supported by a 5.61-fold increase in the level of caspase-3 compared to the control cells. Moreover, it arrested the HepG2 cell growth mostly at the Pre-G1 phase. Several in silico studies were performed including docking, ADMET, and toxicity studies to predict binding mode against VEGFR-2 and to anticipate pharmacokinetic, drug-likeness, and toxicity of the synthesised compounds.
Collapse
Affiliation(s)
- Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rogy R. Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | | | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Gaber AA, Sobhy M, Turky A, Abdulwahab HG, Al-Karmalawy AA, Elhendawy MA, Radwan MM, Elkaeed EB, Ibrahim IM, Elzahabi HSA, Eissa IH. Discovery of new 1 H-pyrazolo[3,4- d]pyrimidine derivatives as anticancer agents targeting EGFR WT and EGFR T790M. J Enzyme Inhib Med Chem 2022; 37:2283-2303. [PMID: 36000168 PMCID: PMC9466626 DOI: 10.1080/14756366.2022.2112575] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 10/28/2022] Open
Abstract
New 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed and synthesised to act as epidermal growth factor receptor inhibitors (EGFRIs). The synthesised derivatives were assessed for their in vitro anti-proliferative activities against A549 and HCT-116 cancer cells. Compounds 8, 10, 12a, and 12b showed potent anti-proliferative activities. Compound 12b was the most promising member with IC50 values of 8.21 and 19.56 µM against A549 and HCT-116, respectively. Compounds 8, 10, 12a, and 12b were evaluated for their kinase inhibitory activities against wild EGFR (EGFRWT). Compound 12b was the most potent member showing an IC50 value of 0.016 µM. In addition, compound 12b showed noticeable activity against mutant EGFR (EGFRT790M) (IC50 = 0.236 µM). Flow cytometric analyses revealed that compound 12b is a good apoptotic inducer and can arrest the cell cycle at S and G2/M phases. Furthermore, it produced an 8.8-fold increase in BAX/Bcl-2 ratio. Molecular docking studies were carried out against EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Ahmed A. Gaber
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Sobhy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Abdallah Turky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Mostafa. A. Elhendawy
- Department of Chemistry and Biochemistry, University of Mississippi, MS, USA
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed. M. Radwan
- National Center for Natural Products Research, University of Mississippi, University, MS, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Heba S. A. Elzahabi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
24
|
Design and synthesis of novel quinazolinyl-bisspirooxindoles as potent anti-tubercular agents: an ultrasound-promoted methodology. Mol Divers 2022:10.1007/s11030-022-10500-x. [PMID: 35933454 DOI: 10.1007/s11030-022-10500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
The essential need for the potent anti-tubercular (anti-TB) agents with high selectivity and safety profile prompted us to synthesize a new series of quinazolinyl-bisspirooxindoles. The title compounds were synthesized by one-pot multicomponent [3 + 2] cycloaddition reaction under ultrasonication. Further, in vitro anti-TB activity was evaluated against Mycobacterium tuberculosis H37Rv. Among the screened compounds, two compounds (4q and 4x) showed potent activity with MIC value 1.56 µg/mL and four compounds exhibited significant activity (MIC = 3.125 µg/mL), and also cytotoxicity studies against RAW 264.7 cell lines reveal that most active compounds were less toxic to humans. In addition, in order to demonstrate the inhibitory properties, molecular docking studies were carried out and the results showed that the target compounds have good binding energy and better binding affinity within the active pocket, thus these compounds may consider to be as potent inhibitors toward selective targets.
Collapse
|
25
|
Microwave-assisted synthesis, spectroscopic characterization, and biological evaluation of fused thieno[2,3-d]pyrimidines as potential anti-cancer agents targeting EGFR WT and EGFR T790M. Mol Divers 2022; 27:901-917. [PMID: 35780205 DOI: 10.1007/s11030-022-10477-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane protein tyrosine kinase that is usually overexpressed in many types of cancers. In the present study, an effort was done in synthesis of new 3,4-diaminothieno[2,3-b] thiophene-2,5-dicarbonitrile derivatives 2-8, assisted by a microwave device. Different spectroscopic instruments were used for their analysis and confirmed their chemical structures. The antimicrobial properties of the produced compounds were investigated and found to be promising. Next, they were tested for cytotoxicity against MCF-7, HepG-2, HCT-116, and A549 cell lines. Moreover, in vitro cytotoxicity evaluation against well-known standards, namely, gefitinib and erlotinib was achieved using MTT method. The obtained compounds (2-8) were found to be more effective against the two tested cancer cell lines than erlotinib. In MCF-7 and A549 cells, compound 3 was found to be 4.42 and 4.12 times more active than erlotinib, respectively. The activity of radical scavenging was inhibited by 78%. The most cytotoxic compounds were subsequently studied for their kinase inhibitory effect against EGFRWT and EGFRT790M using the HTRF assay. Compound 3 was shown to be the most powerful against both kinds of EGFR, with IC50 values of 0.28 and 5.02. Furthermore, compound 2 demonstrated the highest antioxidant activity as it has a radical scavenging activity of 78%. Compounds 2,6,7 and 8 revealed to be the most safe compounds, none hepatotoxic, none carcinogenic, none immunotoxic, none mutagenic and none cytotoxic.
Collapse
|
26
|
Alamshany ZM, Tashkandi NY, Othman IMM, Anwar MM, Nossier ES. New thiophene, thienopyridine and thiazoline-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents and multitargeting kinase inhibitors. Bioorg Chem 2022; 127:105964. [PMID: 35759881 DOI: 10.1016/j.bioorg.2022.105964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Multitargeting kinase inhibitors recently proved to be a profitable approach for conquering cancer proliferation. The current study represents the design and synthesis of new thiophene, thienopyridine, and thiazoline-based derivatives 4-14a,b. All the target compounds were examined in vitro against three cancer cell lines; the liver (HepG-2), breast (MCF-7), and colon (HCT-116) where the thiophene-based compounds 5a-c, demonstrated the most potent activity. Furthermore, the latter derivatives revealed a safety profile against WI-38 normal cell line of selectivity indices ranging from 4.43 to 17.44. In vitro enzyme assay of 5a-c revealed that the carbohydrazide analog 5c has the most promising multitargeting inhibiting activity against Pim-1, VEGFR-2, and EGFRWT enzymes of IC50 values; 0.037 ± 0.02, 0.95 ± 0.24, and 0.16 ± 0.05 µM, respectively. As it was the most potent analog, 5c was further subjected to cell cycle and apoptosis analysis. The results indicated that it induced preG1 arrest and an apoptotic effect in the early and late stages. Moreover, further apoptosis studies were carried out for 5c to evaluate its proapoptotic potential. Interestingly, 5c enhanced the levels of Bax/Bcl-2 ratio, p53, and active caspase 3 by 18, 6.4, and 24 folds, respectively compared to the untreated cells. The antimicrobial evaluation showed that only compounds 3 and 5a produced broad-spectrum potency, while 5b and 5c exhibited outstanding antifungal effects. Finally, a molecular docking study was carried out to discover the probable interactions of compound 5c with the active sites of Pim-1, VEGFR-2, and EGFRWT kinases.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Nada Y Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| |
Collapse
|
27
|
Al-Warhi T, El Kerdawy AM, Said MA, Albohy A, Elsayed ZM, Aljaeed N, Elkaeed EB, Eldehna WM, Abdel-Aziz HA, Abdelmoaz MA. Novel 2-(5-Aryl-4,5-Dihydropyrazol-1-yl)thiazol-4-One as EGFR Inhibitors: Synthesis, Biological Assessment and Molecular Docking Insights. Drug Des Devel Ther 2022; 16:1457-1471. [PMID: 35607598 PMCID: PMC9123247 DOI: 10.2147/dddt.s356988] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Epidermal growth factor receptor (EGFR) regulates several cell functions which include cell growth, survival, multiplication, differentiation, and apoptosis. Currently, EGFR kinase inhibitors are of increasing interest as promising targeted antitumor therapeutic agents. Methods Different thiazolyl-pyrazoline derivatives (7a-o) were synthesized and were first tested for anti-proliferative effect towards the A549 lung cancer cell line and the T-47D breast cancer cell line in MTT assay. Thereafter, thiazolyl-pyrazolines (7b, 7g, 7l, and 7m) were subsequently evaluated for their PK inhibition for EGFR. Moreover, representative promising derivatives (7g and 7m) in cytotoxic and PK inhibition assays were tested to investigate their impact on the apoptosis and cell cycle phases in T-47D cells in order to explore more insights into the antitumor actions of the target thiazolyl-pyrazolines. Furthermore, docking studies were accomplished to evaluate the patterns of binding of thiazolyl-pyrazolines 7b, 7g, 7l, and 7m in the EGFR active pocket (PDB ID: 1M17). Results Testing the thiazolyl pyrazoline compounds 7a-o on A549 and T-47D cell lines showed IC50 arrays between 3.92 and 89.03 µM, and between 0.75 and 77.10 µM, respectively. Also, the tested thiazolyl-pyrazolines (7b, 7g, 7l, and 7m) demonstrated significant sub-micromolar EGFR inhibitory actions with IC50 values 83, 262, 171 and 305 nM, respectively, in comparison to erlotinib (IC50 =57 nM). Discussion Generally, it was observed that the tested thiazolyl pyrazolines showed more potent antiproliferative activity toward breast cancer cells T-47D than toward lung cancer cell lines A549. In particular, thiazolyl pyrazolines 7g and 7m showed the best activity against A549 cells (IC50 = 3.92 and 6.53 µM) and T-47D cells (IC50 = 0.88 and 0.75 µM). Compounds 7g and 7m provoked a sub-G1 phase arrest and cell apoptosis which are in agreement with the expected outcome of EGFR inhibition. Finally, the molecular docking of 7g and 7m in the active site of EGFR revealed a common binding pattern similar to that of erlotinib which involves the accommodation of the 1,3 thiazol-4-one ring and pyrazoline ring of target compounds in the binding region of erlotinib’s quinazoline ring and anilino moiety.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Cairo, Egypt
| | - Mohamed A Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, 13713, Saudi Arabia
| | - Wagdy M Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Correspondence: Wagdy M Eldehna, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt, Tel +201068837640, Email
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, 12622, Egypt
| | - Miral A Abdelmoaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantra, Egypt
| |
Collapse
|
28
|
O Aboelez M, Belal A, Xiang G, Ma X. Design, synthesis, and molecular docking studies of novel pomalidomide-based PROTACs as potential anti-cancer agents targeting EGFR WT and EGFR T790M. J Enzyme Inhib Med Chem 2022; 37:1196-1211. [PMID: 35470756 PMCID: PMC9067978 DOI: 10.1080/14756366.2022.2062338] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A new class of EGFR PROTACs based on pomalidomide was developed, synthesised, and tested for their cytotoxic activity against a panel of human cancer cells. Compounds 15–21 were showed to be more effective against the four tested cell lines than erlotinib. In particular, compound 16 was found to be the most potent counterpart as it was 5.55, 4.34, 5.04, and 7.18 times more active than erlotinib against MCF-7, HepG-2, HCT-116, and A549 cells, respectively. Compound 15 was revealed to be more active than doxorubicin against the four tested cell lines. Furthermore, the most potent cytotoxic compounds were studied further for their kinase inhibitory effects against EGFRWT and EGFRT790M using HTRF test. Compound 16 showed to be the most effective against both kinds of EGFR, with IC50 values of 0.10 and 4.02 µM, respectively. Compound 16 could effectively degrade EGFR protein through ubiquitination (Dmax = 96%) at 72 h in the tested cells.
Collapse
Affiliation(s)
- Moustafa O Aboelez
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
In-Silico Screening of Novel Synthesized Thienopyrimidines Targeting Fms Related Receptor Tyrosine Kinase-3 and Their In-Vitro Biological Evaluation. Pharmaceuticals (Basel) 2022; 15:ph15020170. [PMID: 35215283 PMCID: PMC8880588 DOI: 10.3390/ph15020170] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
The present investigation describes the design strategy and synthesis of novel thienopyrimidine compounds in addition to their anticancer activity targeting tyrosine kinase FLT3 enzyme. The synthesized compounds were subjected to a cytotoxic study where compounds 9a and 9b showed the most potent cytotoxicity against HT-29, HepG-2, and MCF-7 cell lines reflected by their IC50 values for 9a (1.21 ± 0.34, 6.62 ± 0.7 and 7.2 ± 1.9 μM), for 9b (0.85 ± 0.16, 9.11 ± 0.3 and 16.26 ± 2.3 μM) and better than that of reference standard which recorded (1.4 ± 1.16, 13.915 ± 2.2, and 8.43 ± 0.5 μM), respectively. Compounds’ selectivity to malignant cells was determined using selectivity assay, interestingly, all the tested compounds demonstrated an excellent selectivity index (SI) range from 20.2 to 99.7. Target in-silico prediction revealed the FLT3 kinase enzyme was the kinase enzyme of highest probability. Molecular docking studies were performed on the prepared compounds which showed promising binding affinity for FLT3 kinase enzyme and the main interactions between the synthesized ligands and kinase active site were similar to those between the co-crystallized ligand and the receptor. Further biological exploration was performed using in-vitro FLT3 kinase enzyme inhibition assay. The results showed that the 2-morpholinoacetamido derivative 10a exhibited highest FLT3 inhibitory activity among the tested compounds followed by compound 9a then 12. Pharmacokinetic assessment disclosed that all the investigated compounds were considered as “drug-like” molecules with promising bioavailability.
Collapse
|
30
|
Elimam DM, Eldehna WM, Salem R, Bonardi A, Nocentini A, Al-Rashood ST, Elaasser MM, Gratteri P, Supuran CT, Allam HA. Natural inspired ligustrazine-based SLC-0111 analogues as novel carbonic anhydrase inhibitors. Eur J Med Chem 2022; 228:114008. [PMID: 34871842 DOI: 10.1016/j.ejmech.2021.114008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022]
Abstract
Ligustrazine is the principle bioactive alkaloid in the widely-used Chinese herb Chuan Xiong rhizome. Herein, a series of novel derivatives has been designed as human carbonic anhydrases inhibitors (hCAIs) starting from the natural product Ligustrazine inserted as a tail instead of the 4-fluorophenyl tail of SLC-0111, a front-runner selective hCA IX inhibitor currently in clinical trials as antitumor/antimetastatic agent. Other derivatives were designed via incorporation of different linkers, of amide and ester type, or incorporation of different zinc anchoring groups such as secondary sulfamoyl and carboxylic acid functionalities. The newly designed molecules were prepared following different synthetic pathways, and were assessed for their inhibitory actions against four isoforms: the widespread cytosolic (hCA I and II), and the transmembrane tumor-related (hCA IX and XII). The primary sulfonamides efficiently inhibited the target hCA IX and hCA XII in the nanomolar range (KIs: 6.2-951.5 nM and 3.3-869.3 nM, respectively). The most selective hCA IX inhibitors 6c and 18 were assessed for their potential anticancer effects, and displayed anti-proliferative activity against MCF-7 cancer cell line with IC50s of 11.9 and 36.7 μM, respectively. Molecular modelling studies unveiled the relationship between structural features and inhibitory profiles against the off-target hCA II and the target, tumor-related isoforms hCA IX and XII.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy; Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Paola Gratteri
- Department of NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
31
|
Bakr RB, Elkanzi NA. Novel 1,2-thiazine-pyridine hybrid: Design, synthesis, antioxidant activity and molecular docking study. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220106112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background & objectives:
1,2-thiazine and pyridine heterocycles drew much attention due to their biological activities including antioxidant activity. Based upon fragment based drug design, novel pyrido[1,2]thiazines 9a-c, thiazolidinopyrido[1,2]thiazines 10a-c and azetidinopyrido[1,2]thiazines 11a-c were designed and prepared.
Methods:
These novel derivatives 9a-c, 10a-c and 11a-c were subjected to screening for their antioxidant activity via various assays as DPPH radical scavenging potential, reducing power assay and metal chelating potential.
Results:
All the assayed derivatives exhibited excellent antioxidant potential and the tested compounds 9a, 9b, 10a, 10b, 11a and 11b exhibited higher DPPH scavenging potential (EC50 = 32.7, 53, 36.1, 60, 40.6 and 67 µM, respectively) than ascorbic acid (EC50 = 86.58 µM). While targets 9a, 10a and 11a (RP50 = 52.19, 59.16 and 52.25 µM, respectively) exhibited better reducing power than the ascorbic acid (RP50 = 84.66 µM). Computational analysis had been utilized to prophesy the bioactivity and molecular properties of the target compounds.
Conclusion:
To predict the binding manner of the novel derivatives as antioxidants, in-silico docking study had been performed to all the newly prepared compounds inside superoxide dismutase (SOD) and catalase (CAT) active site. The most active antioxidant candidate 9a (EC50 = 32.7 µM, RP50 = 52.19 µM) displayed excellent binding with Lys134 amino acid residing at Cu-Zn loop of SOD with binding energy score = -7.54 Kcal/mol thereby increase SOD activity and decrease reactive oxygen species.
Collapse
Affiliation(s)
- Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nadia A.A. Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
32
|
Elimam DM, Elgazar AA, El-Senduny FF, El-Domany RA, Badria FA, Eldehna WM. Natural inspired piperine-based ureas and amides as novel antitumor agents towards breast cancer. J Enzyme Inhib Med Chem 2021; 37:39-50. [PMID: 34894962 PMCID: PMC8667897 DOI: 10.1080/14756366.2021.1988944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In this work, the natural piperine moiety was utilised to develop two sets of piperine-based amides (5a–i) and ureas (8a–y) as potential anticancer agents. The anticancer action was assessed against triple negative breast cancer (TNBC) MDA-MB-231, ovarian A2780CP and hepatocellular HepG2 cancer cell lines. In particular, 8q stood out as the most potent anti-proliferative analogue against TNBC MDA-MB-231 cells with IC50 equals 18.7 µM, which is better than that of piperine (IC50 = 47.8 µM) and 5-FU (IC50 = 38.5 µM). Furthermore, 8q was investigated for its possible mechanism of action in MDA-MB-231 cells via Annexin V-FITC apoptosis assay and cell cycle analysis. Moreover, an in-silico analysis has proposed VEGFR-2 as a probable enzymatic target for piperine-based derivatives, and then has explored the binding interactions within VEGFR-2 active site (PDB:4ASD). Finally, an in vitro VEGFR-2 inhibition assay was performed to validate the in silico findings, where 8q showed good VEGFR-2 inhibitory activity with IC50 = 231 nM.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fardous F El-Senduny
- Department of Biochemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
33
|
Elimam DM, Elgazar AA, Bonardi A, Abdelfadil M, Nocentini A, El-Domany RA, Abdel-Aziz HA, Badria FA, Supuran CT, Eldehna WM. Natural inspired piperine-based sulfonamides and carboxylic acids as carbonic anhydrase inhibitors: Design, synthesis and biological evaluation. Eur J Med Chem 2021; 225:113800. [PMID: 34482273 DOI: 10.1016/j.ejmech.2021.113800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
The natural product piperine, the major bioactive alkaloid present in black pepper fruits, has the ability to modulate the functional activity of several biological targets. In this study, we have utilized the natural piperine as a tail moiety to develop new SLC-0111 analogues (6a-d, 8 and 9) as potential carbonic anhydrase inhibitors. Thereafter, different functionalities, free carboxylic acid (11a-c), acetyl (13a) and ethyl ester (13b-c), were exploited as bioisosteres of the sulfamoyl functionality. All piperine-based derivatives were assessed for their inhibitory actions against four human (h) CA isoforms: hCA I, II, IX and XII. The best hCA inhibitory activity was observed for the synthesized primary piperine-sulfonamides (6a-d and 8). In particular, both para-regioisomers (6c and 8) emerged as the most potent hCA inhibitors in this study with two-digit nanomolar activity against hCA II (KIs = 93.4 and 88.6 nM, respectively), hCA IX (KIs = 38.7 and 68.2 nM, respectively), and hCA XII (KIs = 57.5 and 45.6 nM, respectively). Moreover, piperine-sulfonamide 6c was examined for its anti-cancer and pro-apoptotic actions towards breast MCF-7 cancer cell line. Collectively, piperine-based sulfonamides could be considered as a promising scaffold for development of efficient anticancer candidates with potent CA inhibitory activities.
Collapse
Affiliation(s)
- Diaaeldin M Elimam
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Mohamed Abdelfadil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
34
|
Alsaif NA, Mahdy HA, Alanazi MM, Obaidullah AJ, Alkahtani HM, Al-Hossaini AM, Al-Mehizi AA, Elwan A, Taghour MS. Targeting VEGFR-2 by new quinoxaline derivatives: Design, synthesis, antiproliferative assay, apoptosis induction, and in silico studies. Arch Pharm (Weinheim) 2021; 355:e2100359. [PMID: 34862634 DOI: 10.1002/ardp.202100359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/18/2022]
Abstract
Twelve new triazolo[4,3-a]quinoxaline-based compounds are reported as anticancer agents with potential effects against vascular endothelial growth factor receptor-2 (VEGFR-2), using sorafenib as a reference molecule. With sorafenib as the positive control, the antiproliferative effects of the synthesized compounds against MCF-7 and HepG2 cells, as well as their VEGFR-2-inhibitory activities, were assessed. The most powerful VEGFR-2 inhibitor was compound 14a, which had an IC50 value of 3.2 nM, which is very close to that of sorafenib (IC50 = 3.12 nM). Furthermore, compounds 14c and 15d showed potential inhibitory activity against VEGFR-2, with IC50 values of 4.8 and 5.4 nM, respectively. Compound 14a caused apoptosis in HepG2 cells and stopped the cell cycle at the G2/M phase. In HepG2 cells, it also increased the levels of the proteases caspase-3 and caspase-9, as well as the Bax/Bcl-2 ratio. In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) and toxicity experiments revealed that the synthesized agents had acceptable drug-likeness.
Collapse
Affiliation(s)
- Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A Al-Mehizi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Egypt
| |
Collapse
|
35
|
Alanazi MM, Alaa E, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, Alsubaie SM, Taghour MS, Eissa IH. Discovery of new 3-methylquinoxalines as potential anti-cancer agents and apoptosis inducers targeting VEGFR-2: design, synthesis, and in silico studies. J Enzyme Inhib Med Chem 2021; 36:1732-1750. [PMID: 34325596 PMCID: PMC8330740 DOI: 10.1080/14756366.2021.1945591] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
There is an urgent need to design new anticancer agents that can prevent cancer cell proliferation even with minimal side effects. Accordingly, two new series of 3-methylquinoxalin-2(1H)-one and 3-methylquinoxaline-2-thiol derivatives were designed to act as VEGFR-2 inhibitors. The designed derivatives were synthesised and evaluated in vitro as cytotoxic agents against two human cancer cell lines namely, HepG-2 and MCF-7. Also, the synthesised derivatives were assessed for their VEGFR-2inhibitory effect. The most promising member 11e were further investigated to reach a valuable insight about its apoptotic effect through cell cycle and apoptosis analyses. Moreover, deep investigations were carried out for compound 11e using western-plot analyses to detect its effect against some apoptotic and apoptotic parameters including caspase-9, caspase-3, BAX, and Bcl-2. Many in silico investigations including docking, ADMET, toxicity studies were performed to predict binding affinity, pharmacokinetic, drug likeness, and toxicity of the synthesised compounds. The results revealed that compounds 11e, 11g, 12e, 12g, and 12k exhibited promising cytotoxic activities (IC50 range is 2.1 - 9.8 µM), comparing to sorafenib (IC50 = 3.4 and 2.2 µM against MCF-7 and HepG2, respectively). Moreover, 11b, 11f, 11g, 12e, 12f, 12g, and 12k showed the highest VEGFR-2 inhibitory activities (IC50 range is 2.9 - 5.4 µM), comparing to sorafenib (IC50 = 3.07 nM). Additionally, compound 11e had good potential to arrest the HepG2 cell growth at G2/M phase and to induce apoptosis by 49.14% compared to the control cells (9.71%). As well, such compound showed a significant increase in the level of caspase-3 (2.34-fold), caspase-9 (2.34-fold), and BAX (3.14-fold), and a significant decrease in Bcl-2 level (3.13-fold). For in silico studies, the synthesised compounds showed binding mode similar to that of the reference compound (sorafenib).
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Elwan Alaa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan M. Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
36
|
Eldehna WM, Salem R, Elsayed ZM, Al-Warhi T, Knany HR, Ayyad RR, Traiki TB, Abdulla MH, Ahmad R, Abdel-Aziz HA, El-Haggar R. Development of novel benzofuran-isatin conjugates as potential antiproliferative agents with apoptosis inducing mechanism in Colon cancer. J Enzyme Inhib Med Chem 2021; 36:1424-1435. [PMID: 34176414 PMCID: PMC8245078 DOI: 10.1080/14756366.2021.1944127] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
In the current work, a new set of carbohydrazide linked benzofuran-isatin conjugates (5a-e and 7a-i) was designed and synthesised. The anticancer activity for compounds (5b-d, 7a, 7b, 7d and 7g) was measured against NCI-55 human cancer cell lines. Compound 5d was the most efficient, and thus subjected to the five-dose screen where it showed excellent broad activity against almost all tested cancer subpanels. Furthermore, all conjugates (5a-e and 7a-i) showed a good anti-proliferative activity towards colorectal cancer SW-620 and HT-29 cell lines, with an excellent inhibitory effect for compounds 5a and 5d (IC50 = 8.7 and 9.4 µM (5a), and 6.5 and 9.8 µM for (5d), respectively). Both compounds displayed selective cytotoxicity with good safety profile. In addition, both compounds provoked apoptosis in a dose dependent manner in SW-620 cells. Also, they significantly inhibited the anti-apoptotic Bcl2 protein expression and increased the cleaved PARP level that resulted in SW-620 cells apoptosis.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hamada R. Knany
- Department of Pharmacognosy, College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rezk R. Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
37
|
Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Elwan A, Elkady H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3- a:3',4'- c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1093-1114. [PMID: 34056992 PMCID: PMC8168755 DOI: 10.1080/14756366.2021.1915303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).
Collapse
Affiliation(s)
- Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Aldawas
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
38
|
Alanazi MM, Eissa IH, Alsaif NA, Obaidullah AJ, Alanazi WA, Alasmari AF, Albassam H, Elkady H, Elwan A. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1760-1782. [PMID: 34340610 PMCID: PMC8344243 DOI: 10.1080/14756366.2021.1956488] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
39
|
Farahat AA, Samir EM, Zaki MY, Serya RAT, Abdel-Aziz HA. Synthesis and in vitro antiproliferative activity of certain novel pyrazolo[3,4-b]pyridines with potential p38α MAPK-inhibitory activity. Arch Pharm (Weinheim) 2021; 355:e2100302. [PMID: 34796536 DOI: 10.1002/ardp.202100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022]
Abstract
Novel series of pyrazolo[3,4-b]pyridines 9a-j and 14a-f were prepared via a one-pot three-component reaction. Compounds 9a-j were synthesized by the reaction of 3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-5-amine (4) with benzoyl acetonitriles 3a,b and aldehydes 5a-e, whereas the spiro derivatives 14a-f were synthesized by the reaction of pyrazole derivative 4 with 3a-c and indoline-2,3-diones 10a,b. Screening of the antiproliferative activity of 9a-j and 14a-f revealed that 14a and 14d were the most potent analogues against HepG2 and HeLa cells, with IC50 = 4.2 and 5.9 μM, respectively. Moreover, compounds 9c and 14a could promote cell cycle disturbance and apoptosis in HepG2 cells, as evidenced by DNA flow cytometry and Annexin V-FITC/PI assays. Cell cycle analysis of 9c and 14a indicated a reduction in HepG2 cells in the G1 phase, with arrest in the S phase and the G2/M phase, respectively. Also, 9c and 14a are good apoptotic inducers in the HepG2 cell line. Furthermore, compounds 9h and 14d stood out as the most efficient antiproliferative agents in the NCI 60-cell line panel screening, with mean GI % equal to 60.3% and 55.4%, respectively. Additionally, 9c, 9h, 14a, and 14d showed good inhibitory action against the cellular pathway regulator p38α kinase, with IC50 = 0.42, 0.41, 0.13, and 0.64 μM, respectively. A docking study was carried out on the p38α kinase active site, showing a binding mode comparable to that of reported p38 mitogen-activated protein kinase inhibitors. These newly discovered pyrazolo[3,4-b]pyridines could be considered as potential candidates for the development of newly targeted anticancer agents.
Collapse
Affiliation(s)
| | | | | | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo, Egypt
| |
Collapse
|
40
|
Barghash RF, Eldehna WM, Kovalová M, Vojáčková V, Kryštof V, Abdel-Aziz HA. One-pot three-component synthesis of novel pyrazolo[3,4-b]pyridines as potent antileukemic agents. Eur J Med Chem 2021; 227:113952. [PMID: 34731763 DOI: 10.1016/j.ejmech.2021.113952] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 01/10/2023]
Abstract
In the current study, we report on the development of novel series of pyrazolo[3,4-b]pyridine derivatives (8a-u, 11a-n, and 14a,b) as potential anticancer agents. The prepared pyrazolo[3,4-b]pyridines have been screened for their antitumor activity in vitro at NCI-DTP. Thereafter, compound 8a was qualified by NCI for full panel five-dose assay to assess its GI50, TGI and LC50 values. Compound 8a showed broad-spectrum anti-proliferative activities over the whole NCI panel, with outstanding growth inhibition full panel GI50 (MG-MID) value equals 2.16 μM and subpanel GI50 (MG-MID) range: 1.92-2.86 μM. Furthermore, pyrazolo[3,4-b]pyridines 8a, 8e-h, 8o, 8u, 11a, 11e, 11h, 11l and 14a-b were assayed for their antiproliferative effect against a panel of leukemia cell lines (K562, MV4-11, CEM, RS4;11, ML-2 and KOPN-8) where they possessed moderate to excellent anti-leukemic activity. Moreover, pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b were further explored for their effect on cell cycle on RS4;11 cells, in which they dose-dependently increased populations of cells in G2/M phases. Finally we analyzed the changes of selected proteins (HOXA9, MEIS1, PARP, BcL-2 and McL-1) related to cell death and viability in RS4;11 cells via Western blotting. Collectively, the obtained results suggested pyrazolo[3,4-b]pyridines 8o, 8u, 14a and 14b as promising lead molecules for further optimization to develop more potent and efficient anticancer candidates.
Collapse
Affiliation(s)
- Reham F Barghash
- Institute of Chemical Industries Researches, National Research Centre, Dokki, Giza, P.O. Box 12622, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Markéta Kovalová
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Veronika Vojáčková
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| |
Collapse
|
41
|
Shaldam M, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Supuran CT, Eldehna WM. Development of Novel Quinoline-Based Sulfonamides as Selective Cancer-Associated Carbonic Anhydrase Isoform IX Inhibitors. Int J Mol Sci 2021; 22:11119. [PMID: 34681794 PMCID: PMC8541628 DOI: 10.3390/ijms222011119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
A new series of quinoline-based benzenesulfonamides (QBS) were developed as potential carbonic anhydrase inhibitors (CAIs). The target QBS CAIs is based on the 4-anilinoquinoline scaffold where the primary sulphonamide functionality was grafted at C4 of the anilino moiety as a zinc anchoring group (QBS 13a-c); thereafter, the sulphonamide group was switched to ortho- and meta-positions to afford regioisomers 9a-d and 11a-g. Moreover, a linker elongation approach was adopted where the amino linker was replaced by a hydrazide one to afford QBS 16. All the described QBS have been synthesized and investigated for their CA inhibitory action against hCA I, II, IX and XII. In general, para-sulphonamide derivatives 13a-c displayed the best inhibitory activity against both cancer-related isoforms hCA IX (KIs = 25.8, 5.5 and 18.6 nM, respectively) and hCA XII (KIs = 9.8, 13.2 and 8.7 nM, respectively), beside the excellent hCA IX inhibitory activity exerted by meta-sulphonamide derivative 11c (KI = 8.4 nM). The most promising QBS were further evaluated for their anticancer and pro-apoptotic activities on two cancer cell lines (MDA-MB-231 and MCF-7). In addition, molecular docking simulation studies were applied to justify the acquired CA inhibitory action of the target QBS.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, Italian National Research Council (CNR)CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (M.S.); (T.M.I.); (R.S.)
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
42
|
Ma C, Taghour MS, Belal A, Mehany ABM, Mostafa N, Nabeeh A, Eissa IH, Al-Karmalawy AA. Design and Synthesis of New Quinoxaline Derivatives as Potential Histone Deacetylase Inhibitors Targeting Hepatocellular Carcinoma: In Silico, In Vitro, and SAR Studies. Front Chem 2021; 9:725135. [PMID: 34631658 PMCID: PMC8493129 DOI: 10.3389/fchem.2021.725135] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Guided by the structural optimization principle and the promising anticancer effect of the quinoxaline nucleus, a new series of novel HDAC inhibitors were designed and synthesized. The synthesized compounds were designed to bear the reported pharmacophoric features of the HDAC inhibitors in addition to an extra moiety to occupy the non-used vacant deep pocket of the HDAC receptor. The newly prepared compounds were evaluated for their in vitro anti-proliferative activities against HepG-2 and HuH-7 liver cancer cell lines. The tested compounds showed promising anti-proliferative activities against both cell lines. The most active ten candidates (6 c , 6 d , 6 f , 6 g , 6 k , 6 l , 7 b , 8, 10 h , and 12) were further evaluated for their effect on the gene expression levels of Bax as an apoptotic marker and Bcl-2 as an anti-apoptotic one. Moreover, they were evaluated for their ability to inhibit histone deacetylase (HDAC1, HDAC4, and HDAC6) activities. Compound 6 c achieved the best cytotoxic activities on both HepG-2 and HuH-7 cell lines with IC50 values of 1.53 and 3.06 µM, respectively, and also it showed the most inhibitory activities on HDAC1, HDAC4, and HDAC6 with IC50 values of 1.76, 1.39, and 3.46 µM, respectively, compared to suberoylanilide hydroxamic acid (SAHA) as a reference drug (IC50 = 0.86, 0.97, and 0.93 µM, respectively). Furthermore, it achieved a more characteristic arrest in the growth of cell population of HepG-2 at both G0/G1 and S phases with 1.23-, and 1.18-fold, respectively, compared to that of the control, as determined by cell cycle analysis. Also, compound 6 c showed a marked elevation in the AnxV-FITC apoptotic HepG-2 cells percentage in both early and late phases increasing the total apoptosis percentage by 9.98-, and 10.81-fold, respectively, compared to the control. Furthermore, docking studies were carried out to identify the proposed binding mode of the synthesized compounds towards the prospective target (HDAC4). In silico ADMET and toxicity studies revealed that most of the synthesized compounds have accepted profiles of drug-likeness with low toxicity. Finally, an interesting SAR analysis was concluded to help the future design of more potent HDACIs in the future by medicinal chemists.
Collapse
Affiliation(s)
- Chao Ma
- Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Zhengzhou University, Zhengzhou City, China
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Naglaa Mostafa
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
43
|
Alanazi MM, Elkady H, Alsaif NA, Obaidullah AJ, Alkahtani HM, Alanazi MM, Alharbi MA, Eissa IH, Dahab MA. New quinoxaline-based VEGFR-2 inhibitors: design, synthesis, and antiproliferative evaluation with in silico docking, ADMET, toxicity, and DFT studies. RSC Adv 2021; 11:30315-30328. [PMID: 35493991 PMCID: PMC9044819 DOI: 10.1039/d1ra05925d] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023] Open
Abstract
A new series of 3-methylquinoxaline-based derivatives having the same essential pharmacophoric features as VEGFR-2 inhibitors have been synthesized and evaluated for their antiproliferative activities against two human cancer cell lines, MCF-7 and HepG-2. Compounds 15b and 17b demonstrated a significant antiproliferative effect with IC50 ranging from 2.3 to 5.8 μM. An enzymatic assay was carried out for all the tested candidates against VEGFR-2. Compound 17b was the most potent VEGFR-2 inhibitor (IC50 = 2.7 nM). Mechanistic investigation including cell cycle arrest and apoptosis was performed for compound 17b against HepG-2 cells, and the results revealed that 17b induced cell apoptosis and arrested cell cycle in the G2/M phase. Moreover, apoptosis analyses were conducted for compound 17b to evaluate its apoptotic potential. The results showed upregulation in caspase-3 and caspase-9 levels, and improving the Bax/Bcl-2 ratio by more than 10-fold. Docking studies were performed to determine the possible interaction with the VEGFR-2 active site. Further docking studies were carried out for compound 17b against cytochrome P450 to present such compounds as non-inhibitors. In silico ADMET, toxicity, and physico-chemical properties revealed that most of the synthesized members have acceptable values of drug-likeness. Finally, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Manal M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Madhawi A Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
44
|
Acosta-Quiroga K, Rojas-Peña C, Nerio LS, Gutiérrez M, Polo-Cuadrado E. Spirocyclic derivatives as antioxidants: a review. RSC Adv 2021; 11:21926-21954. [PMID: 35480788 PMCID: PMC9034179 DOI: 10.1039/d1ra01170g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/22/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, spiro compounds have attracted significant interest in medicinal chemistry due to their numerous biological activities attributed primarily to their versatility and structural similarity to important pharmacophore centers. Currently, the development of drugs with potential antioxidant activities is of great importance since numerous investigations have shown that oxidative stress is involved in the development and progression of numerous diseases such as cancer, senile cataracts, kidney failure, diabetes, high blood pressure, cirrhosis, and neurodegenerative diseases, among others. This article provides an overview of the synthesis and various antioxidant activities found in naturally occurring and synthetic spiro compounds. Among the antioxidant activities reviewed are DPPH, ABTS, FRAP, anti-LPO, superoxide, xanthine oxidase, peroxide, hydroxyl, and nitric oxide tests, among others. Molecules that presented best results for these tests were spiro compounds G14, C12, D41, C18, C15, D5, D11, E1, and C14. In general, most active compounds are characterized for having at least one oxygen atom; an important number of them (around 35%) are phenolic compounds, and in molecules where this functional group was absent, aryl ethers and nitrogen-containing functional groups such as amine and amides could be found. Recent advances in the antioxidant activity profiles of spiro compounds have shown that they have a significant position in discovering drugs with potential antioxidant activities.
Collapse
Affiliation(s)
- Karen Acosta-Quiroga
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Cristian Rojas-Peña
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Luz Stella Nerio
- Universidad de la Amazonia, Programa de Química Cl. 17 Diagonal 17 con, Cra. 3F Florencia 180001 Colombia
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
45
|
Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg Chem 2021; 114:105105. [PMID: 34175720 DOI: 10.1016/j.bioorg.2021.105105] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
VEGF/VEGFR2 pathway is the crucial therapeutic target in the treatment of cancer. So that, a new series of quinoxaline-2(1H)-one derivatives were designed and synthesized. The synthesized compounds were tested against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) aiming to evaluate its anti-proliferative activities. Doxorubicin as a universal anticancer drug and sorafenib as a potent VEGFR-2 inhibitor were used as positive controls. The data obtained from biological activity were found highly correlated with that obtained from molecular modeling studies. The most sensitive cell line to the influence of our new derivatives was HCT-116. Compounds 13b, 15, 16e and 17b exert the highest cytotoxic activities against the tested cell lines. Overall, compound 15 was the most active member with IC50 values of 5.30, 2.20, 5.50 µM against HepG-2, MCF-7 and HCT-116, respectively. Compounds 15 and 17b showed better anti-proliferative activities than doxorubicin and sorafenib against the three cancer cell lines. Additionally, compound 16e showed better anti-proliferative activities than doxorubicin and sorafenib against HepG-2 and HCT-116 but exhibited lower activity against MCF-7 cell line. In addition, the most promising members were further evaluated for their inhibitory activities against VEGFR-2. Compounds 15 and 17b potently inhibited VEGFR-2 at lower IC50 values of 1.09 and 1.19 µM, respectively, compared to sorafenib (IC50 = 1.27 µM). Moreover, docking studies were conducted to investigate the binding pattern of the synthesized compounds against the prospective molecular target VEGFR-2.
Collapse
|
46
|
Sonosynthesis of spiroindolines using functionalized SBA-15. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04506-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Alanazi MM, Mahdy HA, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, Alsubaie SM, Dahab MA, Eissa IH. New bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorg Chem 2021; 112:104949. [PMID: 34023640 DOI: 10.1016/j.bioorg.2021.104949] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
A new series of bis([1,2,4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives were designed and synthesized to have the main essential pharmacophoric features of VEGFR-2 inhibitors. VEGFR-2 inhibitory activities were assessed for the designed compounds. In addition, cytotoxic activity was evaluated for all derivatives against two human cancer cell lines namely, HepG-2 and MCF-7. The most cytotoxic compound 20 h was subjected to further biological investigations including cell cycle, apoptosis, caspase-3, caspase-9, BAX, and Bcl-2 analyses. Different in silico studies as docking, ADMET and toxicity were carried out. The results exhibited that compounds 20b, 20e, 20h and20mshowed promising VEGFR-2 inhibitory activities with IC50values of 5.7, 6.7, 3.2, and 3.1 µM, respectively. Moreover, these promising members exhibited the highest antiproliferative activities against the two cell lines with IC50values ranging from 3.3 to 14.2 µM, comparing to sorafenib (IC50 = 2.17 and 3.43 µM against HepG2 and MCF-7, respectively). Additionally, compound 20h induced cell cycle arrest of HepG2 cells at G2/M phase. Also, such compound increased the progress of apoptosis by 3.5-fold compared to the control. As well, compound 20h showed a significant increase in the level of caspase-3 (2.07-fold), caspase-9 (1.72-fold), and BAX (1.83-fold), and a significant decrease in Bcl-2 level (1.92-fold). The in silico studies revealed that the synthesized compounds have binding pattern like that of sorafenib.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia.
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Abdulrahman A Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Sultan M Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
48
|
El-Metwally SA, Abou-El-Regal MM, Eissa IH, Mehany ABM, Mahdy HA, Elkady H, Elwan A, Elkaeed EB. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg Chem 2021; 112:104947. [PMID: 33964580 DOI: 10.1016/j.bioorg.2021.104947] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Vascular endothelial growth factor-2 (VEGFR-2) is considered one of the most important factors in tumor angiogenesis, and consequently a number of anticancer therapeutics have been developed to inhibit VEGFR-2 signaling. Accordingly, eighteen derivatives of thieno[2,3-d]pyrimidines having structural characteristics similar to VEGFR-2 inhibitors were designed and synthesized. Anticancer activities of the new derivatives were assessed against three human cancer cell lines (HCT-116, HepG2, and MCF-7) using MTT. Sorafenib was used as positive control. Compounds 17c-i, and 20b showed excellent anticancer activities against HCT-116 and HepG2 cell lines, while compounds 17i and 17g was found to be active against MCF-7 cell line. Compound 17f exhibited the highest cytotoxic activities against the examined cell lines, HCT-116 and HepG2, with IC50 values of 2.80 ± 0.16 and 4.10 ± 0.45 µM, respectively. Aiming at exploring the mechanism of action of these compounds, the most active cytotoxic derivatives were in vitro tested for their VEGFR-2 inhibitory activity. Compound 17f showed high activity against VEGFR-2 with an IC50 value of 0.23 ± 0.03 µM, that is equal to that of reference, sorafenib (IC50 = 0.23 ± 0.04 µM). Molecular docking studies also were performed to investigate the possible binding interactions of the target compounds with the active sites of VEGFR-2. The synthesized compounds were analyzed for their ADMET and toxicity properties. Results showed that most of the compounds have low to very low BBB penetration levels and they have non-inhibitory effect against CYP2D6. All compounds were predicted to be non-toxic against developmental toxicity potential model except compounds 17b and 20b.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological Institute, 10th of Ramadan City 228, Egypt
| | - Mohsen M Abou-El-Regal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
49
|
Alsaif NA, Dahab MA, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Mahdy HA, Elkady H. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorg Chem 2021; 110:104807. [PMID: 33721808 DOI: 10.1016/j.bioorg.2021.104807] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/07/2023]
Abstract
New series of [1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one and [1,2,4]triazolo[4,3-a]quinoxaline derivatives have been designed, synthesized, and biologically assessed for their anti-proliferative activities against two selected tumor cell lines MCF-7 and HepG2. Comparing to sorafenib (IC50 = 2.17 ± 0.13 and 3.51 ± 0.21 µM against MCF-7 and HepG2, respectively), compound 25d, 25e, 25i, and 27e exhibited the highest activities against the examined cell lines with IC50 values extending from 4.1 ± 0.4 to 11.7 ± 1.1 µM. Furthermore, VEGFR-2 inhibitory activities were assessed for all the synthesized compounds as potential mechanisms for their anti-proliferative activities. Compounds 25d, 25e, 25i, and 27e displayed prominent inhibitory efficiency versus VEGFR-2 kinase with IC50 value ranging from 3.4 ± 0.3 to 6.8 ± 0.5 nM. Fascinatingly, the results of VEGFR-2 inhibitory assays were matched with that of the cytotoxicity data, where the most potent anti-proliferative derivatives exhibited promising VEGFR-2 inhibitory activities. Further studies displayed the ability of compound 25d to induce apoptosis in HepG2 cells and can arrest the growth of such cells at the G2/M phase. Also, compound 25d produced a significant increase in the level of BAX/Bcl-2 ratio (3.8-fold), caspase- 3 (1.8-fold), and caspase-9 (1.9-fold) compared to the control cells. Molecular docking studies were carried out to investigate the possible binding interaction inside the active site of the VEGFR-2.
Collapse
Affiliation(s)
- Nawaf A Alsaif
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed M Alanazi
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad J Obaidullah
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Al-Mehizia
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Manal M Alanazi
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Saleh Aldawas
- Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
50
|
Shaldam M, Eldehna WM, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Abdel-Aziz HA, Supuran CT. Development of novel benzofuran-based SLC-0111 analogs as selective cancer-associated carbonic anhydrase isoform IX inhibitors. Eur J Med Chem 2021; 216:113283. [PMID: 33667848 DOI: 10.1016/j.ejmech.2021.113283] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/02/2023]
Abstract
In the present study, we describe the design of different series of benzofuran-based derivatives as potential carbonic anhydrase inhibitors (CAIs). The adopted design is based on bioisosteric replacement for the p-fluorophenyl SLC-0111 tail with the lipophilic 2-methylbenzofuran or 5-bromobenzofuran tails to furnish the 2-methylbenzofuran (MBF) sulfonamides (MBFS; 9, 11 and 13) and 5-bromobenzofuran (BBF) sulfonamides (BBFS; 27a-b, 28a-b and 29a-c), respectively. Thereafter, the urea spacer was either elongated to furnish MBFS (17 and 19), and BBFS (30) series, or replaced by a carbamate one to afford MBFS (15). All the designed compounds were synthesized and evaluated for their inhibitory activities against four human (h) CA isoforms: hCA I, II, IX and XII. MBFS (11b and 17) and BBFS (28b, 29a and 30) efficiently inhibited the tumor-related CA IX isoform in the single-digit nanomolar range (KIs = 8.4, 7.6, 5.5, 7.1 and 1.8 nM, respectively). In particular, MBFS 11b and BBFS 28b exhibited good selectivity toward hCA IX isoform over the main off-target hCA II isoform (S.I. = 26.4 and 58.9, respectively). As a consequence, 11b and 28b were examined for their anticancer and pro-apoptotic activities toward MDA-MB-231 and MCF-7 cancer cell lines.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|