1
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Pillaiyar T, Wozniak M, Abboud D, Rasch A, Liebing AD, Poso A, Kronenberger T, Stäubert C, Laufer SA, Hanson J. Development of Ligands for the Super Conserved Orphan G Protein-Coupled Receptor GPR27 with Improved Efficacy and Potency. J Med Chem 2023; 66:17118-17137. [PMID: 38060818 DOI: 10.1021/acs.jmedchem.3c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The orphan G protein-coupled receptor GPR27 appears to play a role in insulin production, secretion, lipid metabolism, neuronal plasticity, and l-lactate homeostasis. However, investigations on the function of GPR27 are impaired by the lack of potent and efficacious agonists. We describe herein the development of di- and trisubstituted benzamide derivatives 4a-e, 7a-z, and 7aa-ai, which display GPR27-specific activity in a β-arrestin 2 recruitment-based assay. Highlighted compounds are PT-91 (7p: pEC50 6.15; Emax 100%) and 7ab (pEC50 6.56; Emax 99%). A putative binding mode was revealed by the docking studies of 7p and 7ab with a GPR27 homology model. The novel active compounds exhibited no GPR27-mediated activation of G proteins, indicating that the receptor may possess an atypical profile. Compound 7p displays high metabolic stability and brain exposure in mice. Thus, 7p represents a novel tool to investigate the elusive pharmacology of GPR27 and assess its potential as a drug target.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Alexander Rasch
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
3
|
Amador R, Tahrioui A, Barreau M, Lesouhaitier O, Smietana M, Clavé G. N-Acylsulfonamide: a valuable moiety to design new sulfa drug analogues. RSC Med Chem 2023; 14:1567-1571. [PMID: 37593573 PMCID: PMC10429802 DOI: 10.1039/d3md00229b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Sulfonamides are the oldest class of antibiotics, discovered more than 80 years ago. They are still used today despite the appearance of drug resistance phenomena that limit their prescription. Since the discovery and use of the first sulfa drugs, many analogues have been synthesized in order to obtain new active molecules able to circumvent bacterial resistance. Structurally similar to sulfonamide, the N-acylsulfonamide group arouses interest in the field of medicinal chemistry due to specific physico-chemical properties. We report here the synthesis and antibacterial/antibiofilm activities of 18 sulfa drug analogues with an N-acylsulfonamide moiety. These derivatives were obtained efficiently by sulfo-click reactions between readily available thioacid and sulfonyl azide synthons.
Collapse
Affiliation(s)
- Romain Amador
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM 1919 route de Mende 34095 Montpellier France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-infectieuses (CBSA) UR 4312 F-76000 Rouen France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-infectieuses (CBSA) UR 4312 F-76000 Rouen France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-infectieuses (CBSA) UR 4312 F-76000 Rouen France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM 1919 route de Mende 34095 Montpellier France
| | - Guillaume Clavé
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM 1919 route de Mende 34095 Montpellier France
| |
Collapse
|
4
|
Wang Y, Huang T, Gu J, Lu L. Targeting the metabolism of tumor-infiltrating regulatory T cells. Trends Immunol 2023:S1471-4906(23)00109-6. [PMID: 37442660 DOI: 10.1016/j.it.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
Although targeting the tumor metabolism is performed in cooperation with immunotherapy in the era of precision oncology, ignorance of immune cells' metabolism has resulted in unstable antitumor responses. Tumor-infiltrating regulatory T cells (TI-Tregs) are unique, overcoming the hypoxic, acidic, and nutrient-deficient tumor microenvironments (TMEs) and maintaining immunosuppressive functions. However, secondary autoimmunity caused by systemic Treg depletion remains the 'Sword of Damocles' for current Treg-targeted therapies. In this opinion piece, we propose that metabolically reprogrammed TI-Tregs might represent an obstacle to cancer therapies. Indeed, metabolism-based Treg-targeted therapy might provide higher selectivity for clearing TI-Tregs than traditional kinase/checkpoint inhibitors and chemokine/chemokine receptor blockade; it might also restore the efficacy of targeting the tumor metabolism and eliminate certain metabolic barriers to immunotherapy.
Collapse
Affiliation(s)
- Yiming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci 2023; 44:442-456. [PMID: 37248103 DOI: 10.1016/j.tips.2023.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Lymphocytes maturing in the thymus (T cells) are key factors in adaptive immunity and the regulation of inflammation. The kynurenine pathway of tryptophan metabolism includes several enzymes and compounds that can modulate T cell function, but manipulating these pharmacologically has not achieved the expected therapeutic activity for the treatment of autoimmune disorders and cancer. With increasing knowledge of other pathways interacting with kynurenines, the expansion of screening methods, and the application of virtual techniques to understanding enzyme structures and mechanisms, details of interactions between kynurenines and other pathways are being revealed. This review surveys some of these alternative approaches to influence T cell function indirectly via the kynurenine pathway and summarizes the most recent work on the development of compounds acting directly on the kynurenine pathway.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
6
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
7
|
Wang PF, Yang LQ, Shi ZH, Li XM, Qiu HY. An updated patent review of IDO1 inhibitors for cancer (2018-2022). Expert Opin Ther Pat 2022; 32:1145-1159. [PMID: 36420761 DOI: 10.1080/13543776.2022.2151894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO1) is highly related to the immune evasion of a wide range of malignancies due to its role in the immune suppression caused by the depletion of tryptophan (Trp) and the accumulation of kynurenine (Kyn). The combination of IDO1 inhibitors with other treatments represents a promising strategy in immunotherapy, although considerable challenges lie ahead. AREAS COVERED This review focuses on patent publications searched from Espacenet and Google Scholar, and related to IDO1 inhibitors with potential anti-cancer utilization during the period 2018-2022. EXPERT OPINION Despite the clinical trial failure of the first-in-class IDO1 inhibitor epacadostat in combination with pembrolizumab, numerous studies have been carried on to pursue more efficient IDO1-based immune-modulating therapeutic solutions. A large number of IDO1 inhibitors with new structures and design concepts have been produced with the impetus of crystallographic studies, and have shown great research potential. The elaboration on the combination of IDO1 inhibitors with other targeting agents, the more precise selection of patients, the identification of more reliable biomarkers for evaluating the IDO1 treatment, and the investigation of possible toxicity, are critical factors to promote IDO1-based immunotherapies from bench to bedside.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Li-Qiang Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Zhao-Hang Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Xue-Min Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| | - Han-Yue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Yan Y, Huang L, Liu Y, Yi M, Chu Q, Jiao D, Wu K. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol 2022; 15:104. [PMID: 35948909 PMCID: PMC9364625 DOI: 10.1186/s13045-022-01322-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Characterized by the expression of the critical transcription factor forkhead box protein P3, regulatory T (Treg) cells are an essential part of the immune system, with a dual effect on the pathogenesis of autoimmune diseases and cancer. Targeting Tregs to reestablish the proinflammatory and immunogenic tumor microenvironment (TME) is an increasingly attractive strategy for cancer treatment and has been emphasized in recent years. However, attempts have been significantly hindered by the subsequent autoimmunity after Treg ablation owing to systemic loss of their suppressive capacity. Cellular metabolic reprogramming is acknowledged as a hallmark of cancer, and emerging evidence suggests that elucidating the underlying mechanisms of how intratumoral Tregs acquire metabolic fitness and superior immunosuppression in the TME may contribute to clinical benefits. In this review, we discuss the common and distinct metabolic profiles of Tregs in peripheral tissues and the TME, as well as the differences between Tregs and other conventional T cells in their metabolic preferences. By focusing on the critical roles of different metabolic programs, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, fatty acid synthesis, and amino acid metabolism, as well as their essential regulators in modulating Treg proliferation, migration, and function, we hope to provide new insights into Treg cell-targeted antitumor immunotherapies.
Collapse
Affiliation(s)
- Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Culletta G, Allegra M, Almerico AM, Restivo I, Tutone M. In Silico Design, Synthesis, and Biological Evaluation of Anticancer Arylsulfonamide Endowed with Anti-Telomerase Activity. Pharmaceuticals (Basel) 2022; 15:ph15010082. [PMID: 35056139 PMCID: PMC8778141 DOI: 10.3390/ph15010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible role in tumor progression. Several studies have evidenced telomerase as a promising target for developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical and green methods. Compound 2C revealed an interesting IC50 (33 ± 4 µM) against the K-562 cell line compared with the known telomerase inhibitor BIBR1532 IC50 (208 ± 11 µM) with an SI ~10 compared to the BALB/3-T3 cell line. A 100 ns MD simulation of 2C in the telomerase active site evidenced Phe494 as the key residue as well as in BIBR1532. Each moiety of compound 2C was involved in key interactions with some residues of the active site: Arg557, Ile550, and Gly553. Compound 2C, as an arylsulfonamide derivative, is an interesting hit compound that deserves further investigation in terms of optimization of its structure to obtain more active telomerase inhibitors
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, 98166 Messina, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Mario Allegra
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Ignazio Restivo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90123 Palermo, Italy; (M.A.); (A.M.A.); (I.R.)
- Correspondence:
| |
Collapse
|
10
|
Pillaiyar T, Rosato F, Wozniak M, Blavier J, Charles M, Laschet C, Kronenberger T, Müller CE, Hanson J. Structure-activity relationships of agonists for the orphan G protein-coupled receptor GPR27. Eur J Med Chem 2021; 225:113777. [PMID: 34454125 DOI: 10.1016/j.ejmech.2021.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
GPR27 belongs, with GPR85 and GPR173, to a small subfamily of three receptors called "Super-Conserved Receptors Expressed in the Brain" (SREB). It has been postulated to participate in key physiological processes such as neuronal plasticity, energy metabolism, and pancreatic β-cell insulin secretion and regulation. Recently, we reported the first selective GPR27 agonist, 2,4-dichloro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (I, pEC50 6.34, Emax 100%). Here, we describe the synthesis and structure-activity relationships of a series of new derivatives and analogs of I. All products were evaluated for their ability to activate GPR27 in an arrestin recruitment assay. As a result, agonists were identified with a broad range of efficacies including partial and full agonists, showing higher efficacies than the lead compound I. The most potent agonist was 4-chloro-2,5-difluoro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7y, pEC50 6.85, Emax 37%), and the agonists with higher efficacies were 4-chloro-2-methyl-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7p, pEC50 6.04, Emax 123%), and 2-bromo-4-chloro-N-(4-(N-phenylsulfamoyl)phenyl)benzamide (7r, pEC50 5.99, Emax 123%). Docking studies predicted the putative binding site and interactions of agonist 7p with GPR27. Selected potent agonists were found to be soluble and devoid of cellular toxicity within the range of their pharmacological activity. Therefore, they represent important new tools to further characterize the (patho)physiological roles of GPR27.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany; Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| | - Francesca Rosato
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Jeremy Blavier
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Maëlle Charles
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany; Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Str. 14, Tübingen, 72076, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Guerra WD, Lucena-Agell D, Hortigüela R, Rossi RA, Fernando Díaz J, Padrón JM, Barolo SM. Design, Synthesis, and in vitro Evaluation of Tubulin-Targeting Dibenzothiazines with Antiproliferative Activity as a Novel Heterocycle Building Block. ChemMedChem 2021; 16:3003-3016. [PMID: 34231318 DOI: 10.1002/cmdc.202100383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/27/2021] [Indexed: 01/15/2023]
Abstract
We prepared a series of free NH and N-substituted dibenzonthiazines with potential anti-tumor activity from N-aryl-benzenesulfonamides. A biological test of synthesized compounds (59 samples) was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. We identified 6-(phenylsulfonyl)-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide and 6-tosyl-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide as the best compounds with promising values of activity (overall range of 2-5.4 μM). Herein, we report the dibenzothiazine core as a novel building block with antiproliferative activity, targeting tubulin dynamics.
Collapse
Affiliation(s)
- Walter D Guerra
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Roberto A Rossi
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - J Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - Silvia M Barolo
- Instituto de Investigaciones en Físico Química de Córdoba, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
12
|
Mo C, Xie S, Liu B, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Indoleamine 2,3-dioxygenase 1 limits hepatic inflammatory cells recruitment and promotes bile duct ligation-induced liver fibrosis. Cell Death Dis 2021; 12:16. [PMID: 33414436 PMCID: PMC7791029 DOI: 10.1038/s41419-020-03277-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a course of chronic liver dysfunction, can develop into cirrhosis and hepatocellular carcinoma. Inflammatory insult owing to pathogenic factors plays a crucial role in the pathogenesis of liver fibrosis. Indoleamine 2,3-dioxygenase 1 (IDO1) can affect the infiltration of immune cells in many pathology processes of diseases, but its role in liver fibrosis has not been elucidated completely. Here, the markedly elevated protein IDO1 in livers was identified, and dendritic cells (DCs) immune-phenotypes were significantly altered after BDL challenge. A distinct hepatic population of CD11c+DCs was decreased and presented an immature immune-phenotype, reflected by lower expression levels of co-stimulatory molecules (CD40, MHCII). Frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+MHCII+, and CD11c+CD40+ cells in splenic leukocytes were reduced significantly. Notably, IDO1 overexpression inhibited hepatic, splenic CD11c+DCs maturation, mature DCs-mediated T-cell proliferation and worsened liver fibrosis, whereas above pathological phenomena were reversed in IDO1-/- mice. Our data demonstrate that IDO1 affects the process of immune cells recruitment via inhibiting DCs maturation and subsequent T cells proliferation, resulting in the promotion of hepatic fibrosis. Thus, amelioration of immune responses in hepatic and splenic microenvironment by targeting IDO1 might be essential for the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Bin Liu
- Department of Emergency, Guangzhou Red Cross Hospital, Medical College, Jinan University, 510220, Guangzhou, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, 518033, Shenzhen, Guangdong, People's Republic of China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|