1
|
Knez D, Wang F, Duan WX, Hrast Rambaher M, Gobec S, Cheng XY, Wang XB, Mao CJ, Liu CF, Frlan R. Development of novel aza-stilbenes as a new class of selective MAO-B inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 153:107877. [PMID: 39396452 DOI: 10.1016/j.bioorg.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Ipe R, Oh JM, Kumar S, Ahmad I, Nath LR, Bindra S, Patel H, Kolachi KY, Prabhakaran P, Gahtori P, Syed A, Elgorbanh AM, Kim H, Mathew B. Inhibition of monoamine oxidases and neuroprotective effects: chalcones vs. chromones. Mol Divers 2024:10.1007/s11030-024-10959-w. [PMID: 39145880 DOI: 10.1007/s11030-024-10959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Eighteen compounds derived from two sub-series, (HC1-HC9) and (HF1-HF9), were synthesized and evaluated for their inhibitory activities against monoamine oxidase (MAO). HC (chalcone) series showed higher inhibitory activity against MAO-B than against MAO-A, whereas the HF (chromone) series showed reversed inhibitory activity. Compound HC4 most potently inhibited MAO-B with an IC50 value of 0.040 μM, followed by HC3 (IC50 = 0.049 μM), while compound HF4 most potently inhibited MAO-A (IC50 = 0.046 μM), followed by HF2 (IC50 = 0.075 μM). The selectivity index (SI) values of HC4 and HF4 were 50.40 and 0.59, respectively. Structurally, HC4 (4-OC2H5 in B-ring) showed higher MAO-B inhibition than other derivatives, suggesting that the -OC2H5 substitution of the 4-position in the B-ring contributes to the increase of MAO-B inhibition, especially -OC2H5 (HC4) > -OCH3 (HC3) > -F (HC7) > -CH3 (HC2) > -Br (HC8) > -H (HC1) in order. In MAO-A inhibition, the substituent 4-OC2H5 in the B-ring of HF4 contributed to an increase in inhibitory activity, followed by -CH3 (HF2), -F (HF7), -Br (HF8), -OCH3 (HF3), and-H (HF1). In the enzyme kinetics and reversibility study, the Ki value of HC4 for MAO-B was 0.035 ± 0.005 μM, and that of HF4 for MAO-A was 0.035 ± 0.005 μM, and both were reversible competitive inhibitors. We confirmed that HC4 and HF4 significantly ameliorated rotenone-induced neurotoxicity, as evidenced by the reactive oxygen species and superoxide dismutase assays. This study also supports the significant effect of HC4 and HF4 on mitochondrial membrane potential in rotenone-induced toxicity. A lead molecule was used for molecular docking and dynamic simulation studies. These results show that HC4 is a potent selective MAO-B inhibitor and HF4 is a potent MAO-A inhibitor, suggesting that both compounds can be used as treatment agents for neurological disorders.
Collapse
Affiliation(s)
- Reshma Ipe
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Maharashtra, 424002, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sandeep Bindra
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Krishna Yallappa Kolachi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Prabitha Prabhakaran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248007, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorbanh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
3
|
Sun D, Wang B, Jiang Y, Kong Z, Mu M, Yang C, Tan J, Hu Y. Benzodioxane Carboxamide Derivatives As Novel Monoamine Oxidase B Inhibitors with Antineuroinflammatory Activity. ACS Med Chem Lett 2024; 15:798-805. [PMID: 38894921 PMCID: PMC11181489 DOI: 10.1021/acsmedchemlett.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, a series of N-phenyl-2,3-dihydrobenzo[b][1,4]dioxine-6-carboxamide derivatives were designed, synthesized, and evaluated for their inhibitory activities against human MAO-B (hMAO-B). The structure-activity relationship (SAR) was investigated and summarized. Compound 1l (N-(3,4-dichlorophenyl)-2,3-dihydrobenzo[b][1,4]dioxine-6-carboxamide) showed the most potent inhibitory activity with an IC50 value of 0.0083 μM and the selectivity index (IC50 (hMAO-A)/IC50 (hMAO-B)) was >4819. Kinetics and reversibility studies confirmed that compound 1l acted as a competitive and reversible inhibitor of hMAO-B. Molecular docking studies revealed the enzyme-inhibitor interactions, and the rationale was provided. Additionally, compound 1l could effectively inhibit the release of NO, TNF-α, and IL-1β in both LPS- and Aβ1-42-stimulated BV2 cells and attenuate the cytotoxicity induced by Aβ1-42. Since compound 1l exhibited low neurotoxicity, we believe that the hit compound with dual activities of inhibiting MAO-B and antineuroinflammation could be further investigated as a novel potential lead for future studies in vivo.
Collapse
Affiliation(s)
| | | | - Yanmei Jiang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Zuo Kong
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Mengxue Mu
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Changhuan Yang
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Jingbo Tan
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Yun Hu
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| |
Collapse
|
4
|
Jose J, Varughese JK, Parvez MK, Mathew TV. Probing the inhibition of MAO-B by chalcones: an integrated approach combining molecular docking, ADME analysis, MD simulation, and MM-PBSA calculations. J Mol Model 2024; 30:103. [PMID: 38478122 DOI: 10.1007/s00894-024-05889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
CONTEXT Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B. METHODS Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand-protein interactions' dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones' potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Jisna Jose
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Jibin K Varughese
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Thomas V Mathew
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India.
| |
Collapse
|
5
|
Krishna A, Kumar S, Sudevan ST, Singh AK, Pappachen LK, Rangarajan TM, Abdelgawad MA, Mathew B. A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:697-714. [PMID: 37190818 DOI: 10.2174/1871527322666230515155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.
Collapse
Affiliation(s)
- Athulya Krishna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
6
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
7
|
Ivánczi M, Balogh B, Kis L, Mándity I. Molecular Dynamics Simulations of Drug-Conjugated Cell-Penetrating Peptides. Pharmaceuticals (Basel) 2023; 16:1251. [PMID: 37765059 PMCID: PMC10535489 DOI: 10.3390/ph16091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are small peptides capable of translocating through biological membranes carrying various attached cargo into cells and even into the nucleus. They may also participate in transcellular transport. Our in silico study intends to model several peptides and their conjugates. We have selected three CPPs with a linear backbone, including penetratin, a naturally occurring oligopeptide; two of its modified sequence analogues (6,14-Phe-penetratin and dodeca-penetratin); and three natural CPPs with a cyclic backbone: Kalata B1, the Sunflower trypsin inhibitor 1 (SFT1), and Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). We have also built conjugates with the small-molecule drug compounds doxorubicin, zidovudine, and rasagiline for each peptide. Molecular dynamics (MD) simulations were carried out with explicit membrane models. The analysis of the trajectories showed that the interaction of penetratin with the membrane led to spectacular rearrangements in the secondary structure of the peptide, while cyclic peptides remained unchanged due to their high conformational stability. Membrane-peptide and membrane-conjugate interactions have been identified and compared. Taking into account well-known examples from the literature, our simulations demonstrated the utility of computational methods for CPP complexes, and they may contribute to a better understanding of the mechanism of penetration, which could serve as the basis for delivering conjugated drug molecules to their intracellular targets.
Collapse
Affiliation(s)
- Márton Ivánczi
- Institute of Organic Chemistry, Semmelweis University, Hőgyes Endre Utca 7., H-1092 Budapest, Hungary (L.K.)
| | - Balázs Balogh
- Institute of Organic Chemistry, Semmelweis University, Hőgyes Endre Utca 7., H-1092 Budapest, Hungary (L.K.)
| | - Loretta Kis
- Institute of Organic Chemistry, Semmelweis University, Hőgyes Endre Utca 7., H-1092 Budapest, Hungary (L.K.)
| | - István Mándity
- Institute of Organic Chemistry, Semmelweis University, Hőgyes Endre Utca 7., H-1092 Budapest, Hungary (L.K.)
- Artificial Transporters Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., H-1117 Budapest, Hungary
| |
Collapse
|
8
|
Vinaya, Richard AS, Murthy SM, Basavaraju YB, Yathirajan HS, Parkin S. The synthesis, crystal structure and spectroscopic analysis of ( E)-3-(4-chloro-phen-yl)-1-(2,3-di-hydro-benzo[ b][1,4]dioxin-6-yl)prop-2-en-1-one. Acta Crystallogr E Crystallogr Commun 2023; 79:674-677. [PMID: 37601584 PMCID: PMC10439433 DOI: 10.1107/s2056989023005613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023]
Abstract
The synthesis, crystal structure and spectroscopic analysis of (E)-1-(2,3-di-hydro-benzo[b][1,4]dioxin-6-yl)-3-(4-chloro-phen-yl)prop-2-en-1-one (C17H13ClO3), a substituted chalcone, are described. The overall geometry of the mol-ecule is largely planar (r.m.s. deviation = 0.1742 Å), but slightly kinked, leading to a dihedral angle between the planes of the benzene rings at either side of the mol-ecule of 8.31 (9)°. In the crystal, only weak inter-actions determine the packing motifs. These include C-H⋯O and C-H⋯Cl hydrogen bonds and π-π overlap of aromatic rings.
Collapse
Affiliation(s)
- Vinaya
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Austin S. Richard
- Aavishkaar Research Centre, Coorg Institute of Dental Sciences, Virajpet 571 218, India
| | - Subbiah M. Murthy
- Department of Microbiology, Yuvaraja’s College, Mysore 570 005, India
| | - Yeriyur B. Basavaraju
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Hemmige S. Yathirajan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| |
Collapse
|
9
|
Bouissane L, Khouili M, Coudert G, Pujol MD, Guillaumet G. New and promising type of leukotriene B4 (LTB4) antagonists based on the 1,4-benzodioxine structure. Eur J Med Chem 2023; 254:115332. [PMID: 37043995 DOI: 10.1016/j.ejmech.2023.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
New leukotriene B4 (LTB4) antagonists have been synthesized that can be considered as potential anti-inflammatory drugs. Structures containing the dioxygenated nucleus of 1,4-benzodioxine constitute a potential group of leukotriene B4 (LTB4) antagonists. The objective of this study was to access efficient and selective LTB4 antagonists as a way to elucidate the role of LTB4 in inflammatory processes and therefore allow the development of new types of structures based on 1,4-benzodioxine. Forty-one new 1,4-benzodioxine molecules substituted at different positions of the heterocyclic nucleus were synthesized to determine the minimum structural requirements by studying structure-activity relationships. Eighteen of them were tested in vitro and in vivo for their anti-inflammatory activity related to the antagonist character of LTB4. Pharmacological tests have shown satisfactory in vitro activity for compounds 24b, 24c and 24e with IC50's of 288, 439, 477 nM respectively. The results of the in vivo tests, carried out with the compound that presented greater activity in the in vitro tests 24b, have shown significant anti-inflammatory properties.
Collapse
|
10
|
Kumar S, Oh JM, Abdelgawad MA, Abourehab MA, Tengli AK, Singh AK, Ahmad I, Patel H, Mathew B, Kim H. Development of Isopropyl-Tailed Chalcones as a New Class of Selective MAO-B Inhibitors for the Treatment of Parkinson's Disorder. ACS OMEGA 2023; 8:6908-6917. [PMID: 36844523 PMCID: PMC9947953 DOI: 10.1021/acsomega.2c07694] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 06/16/2023]
Abstract
Thirteen isopropyl chalcones (CA1-CA13) were synthesized and evaluated for their inhibitory activity against monoamine oxidase (MAO). All compounds inhibited MAO-B more effectively than MAO-A. Compound CA4 most potently inhibited MAO-B with an IC50 value of 0.032 μM, similar to that of CA3 (IC50 = 0.035 μM) and with high selectivity index (SI) values for MAO-B over MAO-A (SI = 49.75 and 353.23, respectively). The -OH (CA4) or -F (CA3) group at the para position on the A ring provided higher MAO-B inhibition than that of the other substituents (-OH ≥ -F > -Cl > -Br > -OCH2CH3 > -CF3). On the other hand, compound CA10 most potently inhibited MAO-A with an IC50 value of 0.310 μM and effectively MAO-B (IC50 = 0.074 μM). The Br-containing thiophene substituent (CA10) instead of the A ring showed the highest MAO-A inhibition. In a kinetic study, K i values of compounds CA3 and CA4 for MAO-B were 0.076 ± 0.001 and 0.027 ± 0.002 μM, respectively, and that of CA10 for MAO-A was 0.016 ± 0.005 μM. A reversibility study showed that CA3 and CA4 were reversible inhibitors of MAO-B and CA10 was a reversible inhibitor of MAO-A. In docking and molecular dynamics, the hydroxyl group of CA4 and two hydrogen bonds contributed to the stability of the protein-ligand complex. These results suggest that CA3 and CA4 are potent reversible selective MAO-B inhibitors and can be used for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Jong Min Oh
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohammed A.S. Abourehab
- Department
of Pharmaceutics, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| | - Anand Kumar Tengli
- Department
of Pharmaceutical Chemistry, JSS College
of Pharmacy, Mysuru 570015, India
| | - Ashutosh Kumar Singh
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Iqrar Ahmad
- Department
of Pharmaceutical Chemistry, Prof. Ravindra
Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
- Division
of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Maharashtra, India
| | - Harun Patel
- Division
of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur 425405, Maharashtra, India
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
11
|
Królicka E, Kieć-Kononowicz K, Łażewska D. Chalcones as Potential Ligands for the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2022; 15:ph15070847. [PMID: 35890146 PMCID: PMC9317344 DOI: 10.3390/ph15070847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022] Open
Abstract
Along with the increase in life expectancy, a significant increase of people suffering from neurodegenerative diseases (ND) has been noticed. The second most common ND, after Alzheimer’s disease, is Parkinson’s disease (PD), which manifests itself with a number of motor and non-motor symptoms that hinder the patient’s life. Current therapies can only alleviate those symptoms and slow down the progression of the disease, but not effectively cure it. So now, in addition to understanding the mechanism and causes of PD, it is also important to find a powerful way of treatment. It has been proved that in the etiology and course of PD, the essential roles are played by dopamine (DA) (an important neurotransmitter), enzymes regulating its level (e.g., COMT, MAO), and oxidative stress leading to neuroinflammation. Chalcones, due to their “simple” structure and valuable biological properties are considered as promising candidates for treatment of ND, also including PD. Here, we provide a comprehensive review of chalcones and related structures as potential new therapeutics for cure and prevention of PD. For this purpose, three databases (Pubmed, Scopus and Web of Science) were searched to collect articles published during the last 5 years (January 2018–February 2022). Chalcones have been described as promising enzyme inhibitors (MAO B, COMT, AChE), α-synuclein imaging probes, showing anti-neuroinflammatory activity (inhibition of iNOS or activation of Nrf2 signaling), as well as antagonists of adenosine A1 and/or A2A receptors. This review focused on the structure–activity relationships of these compounds to determine how a particular substituent or its position in the chalcone ring(s) (ring A and/or B) affects biological activity.
Collapse
|
12
|
Shahid Nadeem M, Azam Khan J, Kazmi I, Rashid U. Design, Synthesis, and Bioevaluation of Indole Core Containing 2-Arylidine Derivatives of Thiazolopyrimidine as Multitarget Inhibitors of Cholinesterases and Monoamine Oxidase A/B for the Treatment of Alzheimer Disease. ACS OMEGA 2022; 7:9369-9379. [PMID: 35350344 PMCID: PMC8945123 DOI: 10.1021/acsomega.1c06344] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 05/07/2023]
Abstract
In continuation of our previous study to identify multitarget inhibitors of cholinesterases (ChEs) and monoamine oxidase (MAOs) isoforms, we synthesized and evaluated 2-arylidine derivatives of thiazolopyrimidine for the treatment of Alzheimer disease. Three series of compounds with different linker size and target-anchoring functional groups were synthesized. Compounds 34-37 showed excellent to good AChE and BChE inhibition potential at nanomolar to low micromolar concentration. While all the compounds showed excellent MAO-B inhibition and selectivity relative to MAO-A, compounds 25 and 36 emerged as the most potent MAO-B inhibitors of all the series of synthesized compounds with IC50 values of 0.13 μM and 0.10 μM, respectively. Furthermore, kinetic studies of inhibitor 35 showed mixed inhibition mode. Exploration of structure activity relationship (SAR) revealed the role of functionalities and length of linkers on potency. Acute toxicity evaluation showed the safety of tested compounds up to 2000 mg/kg dose. PAMPA-BBB evaluation showed BBB permeability of the tested compounds, while MTT assay performed on neuroblastoma SHSY5Y cells showed that all the tested compounds are non-neurotoxic in the tested concentrations. Docking studies showed a strong correlation with experimental in vitro results via binding orientations and interaction patterns of the synthesized compounds into the binding sites of target enzymes. We have successfully identified safe, non-neurotoxic, and blood brain barrier permeable multitarget lead compounds for the treatment of AD.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University Jeddah, 21589, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University Jeddah, 21589, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University Jeddah, 21589, Saudi Arabia
| | - Umer Rashid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
13
|
Kamecki F, Knez D, Carvalho D, Marcucci C, Rademacher M, Higgs J, Žakelj S, Marcos A, de Tezanos Pinto F, Abin-Carriquiry JA, Gobec S, Colettis N, Marder M. Multitarget 2'-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities. Neuropharmacology 2021; 201:108837. [PMID: 34653442 DOI: 10.1016/j.neuropharm.2021.108837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023]
Abstract
The complex nature of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD) calls for multidirectional treatment. Restoring neurotransmitter levels by combined inhibition of cholinesterases (ChEs) and monoamine oxidases (MAOs, MAO-A and MAO-B), in conjunction with strategies to counteract amyloid β (Aβ) aggregation, may constitute a therapeutically strong multi-target approach for the treatment of NDDs. Chalcones are a subgroup of flavonoids with a broad spectrum of biological activity. We report here the synthesis of 2'-hydroxychalcones as MAO-A and MAO-B inhibitors. Compounds 5c (IC50 = 0.031 ± 0.001 μM), 5a (IC50 = 0.084 ± 0.003 μM), 2c (IC50 = 0.095 ± 0.019 μM) and 2a (IC50 = 0.111 ± 0.006 μM) were the most potent, selective and reversible inhibitors of human (h)MAO-B isoform. hMAO-B inhibitors 1a, 2a and 5a also inhibited murine MAO-B in vivo in mouse brain homogenates. Molecular modelling rationalised the binding mode of 2'-hydroxychalcones in the active site of hMAO-B. Additionally, several derivatives inhibited murine acetylcholinesterase (mAChE) (IC50 values from 4.37 ± 0.83 μM to 15.17 ± 6.03 μM) and reduced the aggregation propensity of Aβ. Moreover, some derivatives bound to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutyric acid A (GABAA) receptors (1a and 2a with Ki = 4.9 ± 1.1 μM and 5.0 ± 1.1 μM, respectively), and exerted sedative and/or anxiolytic like effects on mice. The biological results reported here on 2'-hydroxychalcones provide an extension to previous studies on chalcone scaffold and show them as a potential treatment strategy for NDDs and their associated comorbidities.
Collapse
Affiliation(s)
- Fabiola Kamecki
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Diego Carvalho
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Carolina Marcucci
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Marina Rademacher
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Josefina Higgs
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Alejandra Marcos
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Felicitas de Tezanos Pinto
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Juan Andrés Abin-Carriquiry
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Natalia Colettis
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mariel Marder
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Rehuman N, Oh JM, Nath LR, Khames A, Abdelgawad MA, Gambacorta N, Nicolotti O, Jat R, Kim H, Mathew B. Halogenated Coumarin-Chalcones as Multifunctional Monoamine Oxidase-B and Butyrylcholinesterase Inhibitors. ACS OMEGA 2021; 6:28182-28193. [PMID: 34723016 PMCID: PMC8552465 DOI: 10.1021/acsomega.1c04252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023]
Abstract
A series of halogenated coumarin-chalcones were synthesized, characterized, and their inhibitory activities against monoamine oxidases (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) were evaluated. Compound CC2 most potently inhibited MAO-B with an IC50 value of 0.51 μM, followed by CC1 (IC50 = 0.69 μM), with a selectivity index (SI) of >78.4 and >58.0, respectively, over MAO-A. However, none of the compounds effectively inhibited MAO-A, AChE, and BChE, except for CC2 and CC3 inhibiting BChE with IC50 values of 7.00 (SI > 5.73 over AChE) and 11.8 μM, respectively. CC1 and CC2 were found to be reversible and competitive inhibitors of MAO-B, with K i values of 0.50 ± 0.06 and 0.53 ± 0.04 μM, respectively, and CC2 was also a reversible and competitive inhibitor of BChE, with a K i value of 2.84 ± 0.09 μM. The parallel artificial membrane permeability assay (PAMPA) method showed that lead candidates can cross the blood-brain barrier (BBB). The in vitro toxicity analysis on the Vero cell line (Normal African green monkey kidney epithelial cells) by MTT confirmed that both CC1 and CC2 were nontoxic up to 100 μg/mL, which is almost equivalent to 100 times of their effective concentration used in biological studies. In addition, CC1 and CC2 attenuated H2O2-induced cellular damage via their reactive oxygen species (ROS) scavenging effect. These results suggest that CC1 and CC2 are selective and competitive inhibitors of MAO-B, and that CC2 is a selective and competitive inhibitor of BChE. Molecular docking studies of lead compounds provided the possible type of interactions in the targeted enzymes. Based on the findings, both compounds, CC1 and CC2, can be considered plausible drug candidates against neurodegenerative disorders.
Collapse
Affiliation(s)
- Nisha
Abdul Rehuman
- Department
of Pharmaceutical Chemistry, Dr. Joseph
Mar Thoma Institute of Pharmaceutical Sciences & Research, Alappuzha, Kerala 690503, India
| | - Jong Min Oh
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Lekshmi R. Nath
- Department
of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682, India
| | - Ahmed Khames
- Department
of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Rakesh
Kumar Jat
- Department
of Pharmaceutical Chemistry, JJTU University, Jhunjhunu 333001, India
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
- ,
| |
Collapse
|
15
|
Sasidharan R, Eom BH, Heo JH, Park JE, Abdelgawad MA, Musa A, Gambacorta N, Nicolotti O, Manju SL, Mathew B, Kim H. Morpholine-based chalcones as dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors: synthesis and biochemical investigations. J Enzyme Inhib Med Chem 2021; 36:188-197. [PMID: 33430657 PMCID: PMC7808749 DOI: 10.1080/14756366.2020.1842390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nine compounds (MO1–MO9) containing the morpholine moiety were assessed for their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Most of the compounds potently inhibited MAO-B; MO1 most potently inhibited with an IC50 value of 0.030 µM, followed by MO7 (0.25 µM). MO5 most potently inhibited AChE (IC50 = 6.1 µM), followed by MO9 (IC50 = 12.01 µM) and MO7 most potently inhibited MAO-A (IC50 = 7.1 µM). MO1 was a reversible mixed-type inhibitor of MAO-B (Ki = 0.018 µM); MO5 reversibly competitively inhibited AChE (Ki = 2.52 µM); and MO9 reversibly noncompetitively inhibited AChE (Ki = 7.04 µM). MO1, MO5 and MO9 crossed the blood–brain barrier, and were non-toxic to normal VERO cells. These results show that MO1 is a selective inhibitor of MAO-B and that MO5 is a dual-acting inhibitor of AChE and MAO-B, and that both should be considered candidates for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Rani Sasidharan
- College of Pharmaceutical Science, Government T.D. Medical College, Alappuzha, India.,Organic Chemistry Division, SAS, VIT University, Vellore, India
| | - Bo Hyun Eom
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Jeong Hyun Heo
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Jong Eun Park
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Mohamed A Abdelgawad
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Arafa Musa
- Department of Pharmacogonosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmacogonosy, Al-Azhar University, Cairo, Egypt
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
16
|
Koyiparambath VP, Oh JM, Khames A, Abdelgawad MA, Nair AS, Nath LR, Gambacorta N, Ciriaco F, Nicolotti O, Kim H, Mathew B. Trimethoxylated Halogenated Chalcones as Dual Inhibitors of MAO-B and BACE-1 for the Treatment of Neurodegenerative Disorders. Pharmaceutics 2021; 13:pharmaceutics13060850. [PMID: 34201128 PMCID: PMC8226672 DOI: 10.3390/pharmaceutics13060850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
Six halogenated trimethoxy chalcone derivatives (CH1-CH6) were synthesized and spectrally characterized. The compounds were further evaluated for their inhibitory potential against monoamine oxidases (MAOs) and β-secretase (BACE-1). Six compounds inhibited MAO-B more effectively than MAO-A, and the 2',3',4'-methoxy moiety in CH4-CH6 was more effective for MAO-B inhibition than the 2',4',6'-methoxy moiety in CH1-CH3. Compound CH5 most potently inhibited MAO-B, with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In 2',3',4'-methoxy derivatives (CH4-CH6), the order of inhibition was -Br in CH5 > -Cl in CH4 > -F in CH6 at the para-position in ring B of chalcone. CH4 and CH5 were selective for MAO-B, with selectivity index (SI) values of 15.1 and 31.3, respectively, over MAO-A. CH4 and CH5 moderately inhibited BACE-1 with IC50 values of 13.6 and 19.8 µM, respectively. When CH4 and CH5 were assessed for their cell viability studies on the normal African Green Monkey kidney cell line (VERO) using MTT assays, it was noted that both compounds were found to be safe, and only a slightly toxic effect was observed in concentrations above 200 µg/mL. CH4 and CH5 decreased reactive oxygen species (ROS) levels of VERO cells treated with H2O2, indicating both compounds retained protective effects on the cells by antioxidant activities. All compounds showed high blood brain barrier permeabilities analyzed by a parallel artificial membrane permeability assay (PAMPA). Molecular docking and ADME prediction of the lead compounds provided more insights into the rationale behind the binding and the CNS drug likeness. From non-test mutagenicity and cardiotoxicity studies, CH4 and CH5 were non-mutagenic and non-/weak-cardiotoxic. These results suggest that CH4 and CH5 could be considered candidates for the cure of neurological dysfunctions.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box-11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Lekshmi R. Nath
- Department of Pharmacogonosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India;
| | - Nicola Gambacorta
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|