1
|
Li K, Lin C, Hu YH, Wang J, Jin Z, Zeng ZL, Tang YZ. Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Pleuromutilin Derivatives Containing Thiazole. ACS Infect Dis 2024; 10:1980-1989. [PMID: 38703116 DOI: 10.1021/acsinfecdis.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
In this study, we designed and synthesized a series of pleuromutilin derivatives containing thiazole. The in vitro antimicrobial efficacy of these synthesized compounds was examined by using four strains. Compared with tiamulin (MIC = 0.25 μg/mL), compound 14 exhibited potency in inhibiting MRSA growth (MIC = 0.0625 μg/mL) in these derivatives. Meanwhile, the time-killing kinetics further demonstrated that compound 14 could efficiently inhibit the MRSA growth. After exposure at 4 × MIC, the postantibiotic effect (PAE) of compound 14 was 1.29 h. Additionally, in thigh-infected mice, compound 14 exhibited a more potent antibacterial efficacy (-1.78 ± 0.28 log10 CFU/g) in reducing MRSA load compared to tiamulin (-1.21 ± 0.23 log10 CFU/g). Moreover, the MTT assay on RAW 264.7 cells demonstrated that compound 14 (8 μg/mL) had no significant cytotoxicity. Docking studies indicated the strong affinity of compound 14 toward the 50S ribosomal subunit, with a binding free energy of -9.63 kcal/mol. Taken together, it could be deduced that compound 14 was a promising candidate for treating MRSA infections.
Collapse
Affiliation(s)
- Ke Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chao Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Han Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhang J, Liu Q, Zhao H, Li G, Yi Y, Shang R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure-Activity Relationship Model. Int J Mol Sci 2024; 25:2256. [PMID: 38396934 PMCID: PMC10888563 DOI: 10.3390/ijms25042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The quantitative structure-activity relationship (QSAR) is one of the most popular methods for the virtual screening of new drug leads and optimization. Herein, we collected a dataset of 955 MIC values of pleuromutilin derivatives to construct a 2D-QSAR model with an accuracy of 80% and a 3D-QSAR model with a non-cross-validated correlation coefficient (r2) of 0.9836 and a cross-validated correlation coefficient (q2) of 0.7986. Based on the obtained QSAR models, we designed and synthesized pleuromutilin compounds 1 and 2 with thiol-functionalized side chains. Compound 1 displayed the highest antimicrobial activity against both Staphylococcus aureus ATCC 29213 (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) < 0.0625 μg/mL. These experimental results confirmed that the 2D and 3D-QSAR models displayed a high accuracy of the prediction function for the discovery of lead compounds from pleuromutilin derivatives.
Collapse
Affiliation(s)
- Jiaming Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Qinqin Liu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Haoxia Zhao
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Guiyu Li
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250023, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China (G.L.)
| |
Collapse
|
3
|
Choi Y, Choe HW, Kook M, Choo S, Park TW, Bae S, Kim H, Yang J, Jeong WS, Yu J, Lee KR, Kim YS, Yu J. Proline-Hinged α-Helical Peptides Sensitize Gram-Positive Antibiotics, Expanding Their Physicochemical Properties to Be Used as Gram-Negative Antibiotics. J Med Chem 2024; 67:1825-1842. [PMID: 38124427 PMCID: PMC10860147 DOI: 10.1021/acs.jmedchem.3c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is the most difficult obstacle for small-molecule antibiotics to reach their targets in the cytosol. The molecular features of Gram-negative antibiotics required for passing through the OM are that they should be positively charged rather than neutral, flat rather than globular, less flexible, or more increased amphiphilic moment. Because of these specific molecular characteristics, developing Gram-negative antibiotics is difficult. We focused on sensitizer peptides to facilitate the passage of hydrophobic Gram-positive antibiotics through the OM. We explored ways of improving the sensitizing ability of proline-hinged α-helical peptides by adjusting their length, hydrophobicity, and N-terminal groups. A novel peptide, 1403, improves the potentiation of rifampicin in vitro and in vivo and potentiates most Gram-positive antibiotics. The "sensitizer" approach is more plausible than those that rely on conventional drug discovery methods concerning drug development costs and the development of drug resistance.
Collapse
Affiliation(s)
- Yoonhwa Choi
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Republic
of Korea
- CAMP
Therapeutics, Seoul 08826, Republic of Korea
| | - Hyeong Woon Choe
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Minsoo Kook
- Department
of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seolah Choo
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Tae Woo Park
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Soeun Bae
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Heeseung Kim
- Department
of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jihye Yang
- Department
of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Woo-Seong Jeong
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jiyoung Yu
- Asan
Medical Center, Seoul 05505, Republic
of Korea
| | - Kyeong-Ryoon Lee
- Laboratory
Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Yang Soo Kim
- Department
of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jaehoon Yu
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Republic
of Korea
- CAMP
Therapeutics, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Xia J, Li Y, He C, Yong C, Wang L, Fu H, He XL, Wang ZY, Liu DF, Zhang YY. Synthesis and Biological Activities of Oxazolidinone Pleuromutilin Derivatives as a Potent Anti-MRSA Agent. ACS Infect Dis 2023; 9:1711-1729. [PMID: 37610012 DOI: 10.1021/acsinfecdis.3c00162] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A series of pleuromutilin derivatives containing an oxazolidinone skeleton were synthesized and evaluated in vitro and in vivo as antibacterial agents. Most of the synthesized derivatives exhibited potent antibacterial activities against three strains of Staphylococcus aureus (including MRSA ATCC 33591, MRSA ATCC 43300, and MSSA ATCC 29213) and two strains of Staphylococcus epidermidis (including MRSE ATCC 51625 and MSSE ATCC 12228). Compound 28 was the most active antibacterial agent in vitro (MIC = 0.008-0.125 μg·mL-1) and exhibited a significant bactericidal effect, low cytotoxicity, and weak inhibition (IC50 = 20.66 μmol·L-1) for CYP3A4, as well as exhibited less possibility to cause bacterial resistance. Furthermore, in vivo activities indicated that the compound was effective in reducing MRSA load in a murine thigh infection model. Moreover, it clearly facilitated the healing of MRSA skin infection and inhibited the secretion of the TNF-α, IL-6, and MCP-1 inflammatory factors in serum. These results suggest that oxazolidinone pleuromutilin is a promising therapeutic candidate for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jing Xia
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Yun Li
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Cailu He
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Can Yong
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Li Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Huan Fu
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
| | - Xiao-Long He
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhou-Yu Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Dong-Fang Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yuan-Yuan Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610041, China
| |
Collapse
|
5
|
Xuecheng C, Liang H, Yanpeng X, Yurong Z, Yue L, Yalan P, Zhong C, Jie Z, Zhijian Y, Shiqing H. Development of 2‐Alkyl‐5‐((phenylsulfonyl)oxy)‐1
H
‐indole‐3‐carboxylate Derivatives as Potential Anti‐Biofilm Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chen Xuecheng
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Hu Liang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Xiong Yanpeng
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Zhang Yurong
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Luo Yue
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Peng Yalan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Chen Zhong
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Zhang Jie
- School of Animal Pharmaceutical Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 People's Republic of China
| | - Yu Zhijian
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Han Shiqing
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
6
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
7
|
Alkaline tea tree oil nanoemulsion nebulizers for the treatment of pneumonia induced by drug-resistant Acinetobacter baumannii. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Wu G, Zhu Z, Li J, Luo X, Zhu W, Liao G, Xia J, Zhang W, Pan W, Li T, Wu S. Design, synthesis and antibacterial evaluation of pleuromutilin derivatives. Bioorg Med Chem 2022; 59:116676. [PMID: 35220163 DOI: 10.1016/j.bmc.2022.116676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
We report herein the design, synthesis, and structure-activity relationship studies of pleuromutilin derivatives containing urea/thiourea functionalities. The antibacterial activities of these new pleuromutilin derivatives were evaluated in vitro against Gram-positive pathogens (GPPs) (Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium) and Mycoplasma pneumoniae by the broth dilution method. Most of the targeted compounds exhibit good potency in inhibiting the growth of pathogens including Methicillin-susceptible S. aureus (MSSA, ATCC29213, MIC: 0.0625-16 μg/mL), Methicillin-resistant S. aureus (MRSA, ATCC43300, MIC: 0.125-16 μg/mL) and M. pneumoniae (ATCC15531 MIC: 0.125-1 μg/mL, ATCC29342 MIC: 0.0625-0.25 μg/mL and drug resistant strain MIC: 0.5-2 μg/mL). In particular, the compounds 6m and 6n containing phenyl-urea group showed excellent activity with the MIC value less than 0.0625 μg/mL against S. aureus ATCC29213. The compound 6h exhibited better activity than tiamulin against Methicillin-resistant S. aureus ATCC43300.
Collapse
Affiliation(s)
- Guangxu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jishun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenyong Zhu
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Guoyang Liao
- Institute of Medical Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Kunming 650031, Chin
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Tianlei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|