1
|
Ronca R, Supuran CT. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189120. [PMID: 38801961 DOI: 10.1016/j.bbcan.2024.189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Carbonic anhydrases (CAs), are metallo-enzymes implicated in several pathophysiological processes where tissue pH regulation is required. CA IX is a tumor-associated CA isoform induced by hypoxia and involved in the adaptation of tumor cells to acidosis. Indeed, several tumor-driving pathways can induce CA IX expression, and this in turn has been associated to cancer cells invasion and metastatic features as well as to induction of stem-like features, drug resistance and recurrence. After its functional and structural characterization CA IX targeting approaches have been developed to inhibit its activity in neoplastic tissues, and to date this field has seen an incredible acceleration in terms of therapeutic options and biological readouts. Small molecules inhibitors, hybrid/dual targeting drugs, targeting antibodies and adoptive (CAR-T based) cell therapy have been developed at preclinical level, whereas a sulfonamide CA IX inhibitor and an antibody entered Phase Ib/II clinical trials for the treatment and imaging of different solid tumors. Here recent advances on CA IX biology and pharmacology in cancer, and its therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
2
|
García-Llorca A, Carta F, Supuran CT, Eysteinsson T. Carbonic anhydrase, its inhibitors and vascular function. Front Mol Biosci 2024; 11:1338528. [PMID: 38348465 PMCID: PMC10859760 DOI: 10.3389/fmolb.2024.1338528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
It has been known for some time that Carbonic Anhydrase (CA, EC 4.2.1.1) plays a complex role in vascular function, and in the regulation of vascular tone. Clinically employed CA inhibitors (CAIs) are used primarily to lower intraocular pressure in glaucoma, and also to affect retinal blood flow and oxygen saturation. CAIs have been shown to dilate vessels and increase blood flow in both the cerebral and ocular vasculature. Similar effects of CAIs on vascular function have been observed in the liver, brain and kidney, while vessels in abdominal muscle and the stomach are unaffected. Most of the studies on the vascular effects of CAIs have been focused on the cerebral and ocular vasculatures, and in particular the retinal vasculature, where vasodilation of its vessels, after intravenous infusion of sulfonamide-based CAIs can be easily observed and measured from the fundus of the eye. The mechanism by which CAIs exert their effects on the vasculature is still unclear, but the classic sulfonamide-based inhibitors have been found to directly dilate isolated vessel segments when applied to the extracellular fluid. Modification of the structure of CAI compounds affects their efficacy and potency as vasodilators. CAIs of the coumarin type, which generally are less effective in inhibiting the catalytically dominant isoform hCA II and unable to accept NO, have comparable vasodilatory effects as the primary sulfonamides on pre-contracted retinal arteriolar vessel segments, providing insights into which CA isoforms are involved. Alterations of the lipophilicity of CAI compounds affect their potency as vasodilators, and CAIs that are membrane impermeant do not act as vasodilators of isolated vessel segments. Experiments with CAIs, that shed light on the role of CA in the regulation of vascular tone of vessels, will be discussed in this review. The role of CA in vascular function will be discussed, with specific emphasis on findings with the effects of CA inhibitors (CAI).
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Fabrizio Carta
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Ophthalmology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
3
|
Supuran CT. Targeting carbonic anhydrases for the management of hypoxic metastatic tumors. Expert Opin Ther Pat 2023; 33:701-720. [PMID: 37545058 DOI: 10.1080/13543776.2023.2245971] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Several isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are connected with tumorigenesis. Hypoxic tumors overexpress CA IX and XII as a consequence of HIF activation cascade, being involved in pH regulation, metabolism, and metastases formation. Other isoforms (CA I, II, III, IV) were also reported to be present in some tumors. AREAS COVERED Some CA isoforms are biomarkers for disease progression or response to therapy. Inhibitors, antibodies, and other procedures for targeting these enzymes for the treatment of tumors/metastases are discussed. Sulfonamides and coumarins represent the most investigated classes of inhibitors, but carboxylates, selenium, and tellurium-containing inhibitors were also investigated. Hybrid drugs of CA inhibitors with other antitumor agents for multitargeted therapy were reported. EXPERT OPINION Targeting CAs present in solid or hematological tumors with selective, targeted inhibitors is a validated approach, which has been consolidated in the last years. A host of new preclinical data and several clinical trials of antibodies and small-molecule inhibitors are ongoing, which connected with the large number of new chemotypes/procedures discovered to be effective, may lead to a breakthrough in this therapeutic area. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2018 to 2023.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
4
|
Small Structural Differences Govern the Carbonic Anhydrase II Inhibition Activity of Cytotoxic Triterpene Acetazolamide Conjugates. Molecules 2023; 28:molecules28031009. [PMID: 36770674 PMCID: PMC9919727 DOI: 10.3390/molecules28031009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Acetylated triterpenoids betulin, oleanolic acid, ursolic acid, and glycyrrhetinic acid were converted into their succinyl-spacered acetazolamide conjugates. These conjugates were screened for their inhibitory activity onto carbonic anhydrase II and their cytotoxicity employing several human tumor cell lines and non-malignant fibroblasts. As a result, the best inhibitors were derived from betulin and glycyrrhetinic acid while those derived from ursolic or oleanolic acid were significantly weaker inhibitors but also of diminished cytotoxicity. A betulin-derived conjugate held a Ki = 0.129 μM and an EC50 = 8.5 μM for human A375 melanoma cells.
Collapse
|
5
|
Combs J, Bozdag M, Cravey LD, Kota A, McKenna R, Angeli A, Carta F, Supuran CT. New Insights into Conformationally Restricted Carbonic Anhydrase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020890. [PMID: 36677947 PMCID: PMC9861757 DOI: 10.3390/molecules28020890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
This paper reports an investigation into the impact of pyridyl functional groups in conjunction with hydroxide-substituted benzenesulfonamides on the inhibition of human carbonic anhydrase (CA; EC 4.2.1.1) enzymes. These compounds were tested in vitro of CA II and CA IX, two physiologically important CA isoforms. The most potent inhibitory molecules against CA IX, 3g, 3h, and 3k, were studied to understand their binding modes via X-ray crystallography in adduct with CA II and CA IX-mimic. This research further adds to the field of CA inhibitors to better understand ligand selectivity between isoforms found in humans.
Collapse
Affiliation(s)
- Jacob Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Murat Bozdag
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Lochlin D. Cravey
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anusha Kota
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence: (R.M.); (F.C.)
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
- Correspondence: (R.M.); (F.C.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| |
Collapse
|
6
|
Braconi L, Teodori E, Riganti C, Coronnello M, Nocentini A, Bartolucci G, Pallecchi M, Contino M, Manetti D, Romanelli MN, Supuran CT, Dei S. New Dual P-Glycoprotein (P-gp) and Human Carbonic Anhydrase XII (hCA XII) Inhibitors as Multidrug Resistance (MDR) Reversers in Cancer Cells. J Med Chem 2022; 65:14655-14672. [PMID: 36269278 DOI: 10.1021/acs.jmedchem.2c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a continuing search of dual P-gp and hCA XII inhibitors, we synthesized and studied new N,N-bis(alkanol)amine aryl diester derivatives characterized by the presence of a coumarin group. These hybrids contain both P-gp and hCA XII binding groups to synergistically overcome the P-gp-mediated multidrug resistance (MDR) in cancer cells expressing both P-gp and hCA XII. Indeed, hCA XII modulates the efflux activity of P-gp and the inhibition of hCA XII reduces the intracellular pH, thereby decreasing the ATPase activity of P-gp. All compounds showed inhibitory activities on P-gp and hCA XII proteins taken individually, and many of them displayed a synergistic effect in HT29/DOX and A549/DOX cells that overexpress both P-gp and hCA XII, being more potent than in K562/DOX cells overexpressing only P-gp. Compounds 5 and 14 were identified as promising chemosensitizer agents for selective inhibition in MDR cancer cells overexpressing both P-gp and hCA XII.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126Torino, Italy
| | - Marcella Coronnello
- Department of Health Sciences - Clinical Pharmacology and Oncology Section, University of Florence, Viale Pieraccini 6, 50139Firenze, Italy
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Marialessandra Contino
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125Bari, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019Sesto Fiorentino (FI), Italy
| |
Collapse
|
7
|
Beatriz Vermelho A, Rodrigues GC, Nocentini A, Mansoldo FRP, Supuran CT. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin Drug Discov 2022; 17:1147-1158. [PMID: 36039500 DOI: 10.1080/17460441.2022.2117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giseli Capaci Rodrigues
- UNIGRANRIO - Universidade do Grande Rio Programa de Pós-Graduação em Ensino das Ciências, Rio de Janeiro, Brazil
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Felipe R P Mansoldo
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| |
Collapse
|
8
|
Hiepp L, Mayr D, Gärtner K, Schmoeckel E, Klauschen F, Burges A, Mahner S, Zeidler R, Czogalla B. Carbonic anhydrase XII as biomarker and therapeutic target in ovarian carcinomas. PLoS One 2022; 17:e0271630. [PMID: 35901081 PMCID: PMC9333239 DOI: 10.1371/journal.pone.0271630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Targeting the tumor-associated carbonic anhydrase XII (CA XII) is considered a promising strategy to improve cancer treatment. As such progress is highly demanded for ovarian carcinomas, the present study aimed to provide deeper information about their CA XII expression profile. A large collection of tissue specimens was stained immunohistochemically with a specific anti-CA XII antibody to evaluate the expression in neoplastic and non-neoplastic epithelial ovarian cells. In addition, flow cytometry was used to measure CA XII expression on tumor cells from malignant ascites fluid. Binding of the antibody revealed a significant CA XII expression in most ovarian carcinoma tissue samples and ascites-derived ovarian carcinoma cells. Moreover, CA XII was expressed at higher levels in ovarian carcinomas as compared to borderline ovarian tumors and non-neoplastic ovarian epithelia. Within the carcinoma tissues, high expression of CA XII was associated with higher tumor grading and a trend towards shorter overall survival. Our results indicate that CA XII plays a crucial role for the malignancy of ovarian carcinoma cells and emphasize the potential of CA XII as a diagnostic marker and therapeutic target in the management of ovarian carcinomas.
Collapse
Affiliation(s)
- Lisa Hiepp
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kathrin Gärtner
- Research Group Therapeutic Antibodies, Helmholtz Center Munich–German Research Center for Environmental Health, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Reinhard Zeidler
- Research Group Therapeutic Antibodies, Helmholtz Center Munich–German Research Center for Environmental Health, Munich, Germany
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
9
|
Cancer Therapeutic Targeting of Hypoxia Induced Carbonic Anhydrase IX: From Bench to Bedside. Cancers (Basel) 2022; 14:cancers14143297. [PMID: 35884358 PMCID: PMC9322110 DOI: 10.3390/cancers14143297] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor hypoxia remains a significant problem in the effective treatment of most cancers. Tumor cells within hypoxic niches tend to be largely resistant to most therapeutic modalities, and adaptation of the cells within the hypoxic microenvironment imparts the cells with aggressive, invasive behavior. Thus, a major goal of successful cancer therapy should be the eradication of hypoxic tumor cells. Carbonic Anhydrase IX (CAIX) is an exquisitely hypoxia induced protein, selectively expressed on hypoxic tumor cells, and thus has garnered significant attention as a therapeutic target. In this Commentary, we discuss the current status of targeting CAIX, and future strategies for effective, durable cancer treatment. Abstract Carbonic Anhydrase IX (CAIX) is a major metabolic effector of tumor hypoxia and regulates intra- and extracellular pH and acidosis. Significant advances have been made recently in the development of therapeutic targeting of CAIX. These approaches include antibody-based immunotherapy, as well as use of antibodies to deliver toxic and radioactive payloads. In addition, a large number of small molecule inhibitors which inhibit the enzymatic activity of CAIX have been described. In this commentary, we highlight the current status of strategies targeting CAIX in both the pre-clinical and clinical space, and discuss future perspectives that leverage inhibition of CAIX in combination with additional targeted therapies to enable effective, durable approaches for cancer therapy.
Collapse
|
10
|
Bozdag M, Cravey L, Combs J, Kota A, McKenna R, Angeli A, Selleri S, Carta F, Supuran CT. Small Molecule Alkoxy Oriented Selectiveness on Human Carbonic Anhydrase II and IX Inhibition. ChemMedChem 2022; 17:e202200148. [PMID: 35388618 DOI: 10.1002/cmdc.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Indexed: 11/07/2022]
Abstract
We report aryl sulfonamide inhibitors of human carbonic anhydrase (hCA; EC 4.2.1.1) enzymes containing short ureido alkoxy tails. The inhibition potency of such compounds was investigated in vitro on the major hCA isoforms (i.e. I, II, IX, and XII). A selection of the most potent inhibitory derivatives against the hCA IX isoform (i.e. 5a, 5c, and 6c) was studied, and their binding modes on either hCA II and IX-mimic isoform were assessed by X-ray crystallography on the corresponding ligand/protein adducts. This study adds to the field of developing hCA inhibitors at molecular level the critical interactions governing ligand selectivity.
Collapse
Affiliation(s)
- Murat Bozdag
- NEUROFARBA Department Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6 Sesto Fiorentino, 50019, Florence, Italy
| | - Lochlin Cravey
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Anusha Kota
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Andrea Angeli
- NEUROFARBA Department Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6 Sesto Fiorentino, 50019, Florence, Italy
| | - Silvia Selleri
- NEUROFARBA Department Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6 Sesto Fiorentino, 50019, Florence, Italy
| | - Fabrizio Carta
- NEUROFARBA Department Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6 Sesto Fiorentino, 50019, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Via Ugo Schiff 6 Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
11
|
Nerella SG, Singh P, Arifuddin M, Supuran CT. Anticancer carbonic anhydrase inhibitors: a patent and literature update 2018-2022. Expert Opin Ther Pat 2022; 32:833-847. [PMID: 35616541 DOI: 10.1080/13543776.2022.2083502] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Cancer affects an increasing number of patients each year with an unacceptable death toll worldwide. A new therapeutic approach to combat tumors consists in targeting human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms IX and XII, which are tumor-associated, overexpressed enzymes in hypoxic tumors, being involved in metabolism, pH regulation, ferroptosis and overall tumor progression. AREAS COVERED Small molecule hCA IX/XII and antibody drug conjugate inhibitors targeting the two enzymes and their applications in the management of cancer are discussed. EXPERT OPINION The available 3D crystal structures of hCA IX, XII as well as the off target isoforms hCA I and II, afforded structure-based drug design opportunities, which led to the development of various isoform-selective small molecule inhibitors belonging to diverse classes (sulfonamides, sulfamates, benzoxaboroles, selenols, coumarins, sulfocoumarins and isocoumarins). Many patents focused on small inhibitors containing sulfonamide/ sulfamate/sulfamide derivatives as well as hybrids incorporating sulfonamides and different antitumor chemotypes, such as cytotoxic drugs, kinase/telomerase inhibitors, P-gp and thioredoxin inhibitors. The most investigated candidate belonging to the class is the sulfonamide SLC-0111, in Phase Ib/II clinical trials for the management of advanced, metastatic solid tumors.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.,Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Gachibowli, Hyderabad 500032, T.S.India
| | - Claudiu T Supuran
- Neurofarba Dept., Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
12
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Marciniak B, Drozda R, Kontek R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022; 37:1278-1298. [PMID: 35506234 PMCID: PMC9090362 DOI: 10.1080/14756366.2022.2052868] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland.,Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
|
14
|
Bonardi A, Bua S, Combs J, Lomelino C, Andring J, Osman SM, Toti A, Di Cesare Mannelli L, Gratteri P, Ghelardini C, McKenna R, Nocentini A, Supuran CT. The three-tails approach as a new strategy to improve selectivity of action of sulphonamide inhibitors against tumour-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2022; 37:930-939. [PMID: 35306936 PMCID: PMC8942523 DOI: 10.1080/14756366.2022.2053526] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human (h) carbonic anhydrase (CAs, EC 4.2.1.1) isoforms IX and XII were recently confirmed as anticancer targets against solid hypoxic tumours. The “three-tails approach” has been proposed as an extension of the forerunner “tail” and “dual-tail approach” to fully exploit the amino acid differences at the medium/outer active site rims among different hCAs and to obtain more isoform-selective inhibitors. Many three-tailed inhibitors (TTIs) showed higher selectivity against the tumour-associated isoforms hCA IX and XII with respect to the off-targets hCA I and II. X-ray crystallography studies were performed to investigate the binding mode of four TTIs in complex with a hCA IX mimic. The ability of the most potent and selective TTIs to reduce in vitro the viability of colon cancer (HT29), prostate adenocarcinoma (PC3), and breast cancer (ZR75-1) cell lines was evaluated in normoxic (21% O2) and hypoxic (3% O2) conditions demonstrating relevant anti-proliferative effects.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Florence, Italy
| | - Silvia Bua
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jacob Andring
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alessandra Toti
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Paola Gratteri
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Florence, Italy
| | - Carla Ghelardini
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alessio Nocentini
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Department NEUROFARBA – Pharmaceutical and Nutraceutical Section, University of Firenze, Florence, Italy
| |
Collapse
|