1
|
Zhang Y, Jiang Y, Shang K, Ge C, Fang J, Liu S. Updated pharmaceutical progress on plant antibiotic rhein and its analogs: Bioactivities, structure-activity relationships and future perspectives. Bioorg Med Chem 2024; 113:117895. [PMID: 39259985 DOI: 10.1016/j.bmc.2024.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Rhein, as a plant antibiotic, demonstrates a broad spectrum of pharmacological effects. Nevertheless, its limited water solubility, low bioavailability, and potential hepatotoxicity and nephrotoxicity making it difficult to directly become a medicine, thereby imposing significant constraints on its clinical application. In recent decades, extensive researches have been proceeded on the multifaceted structural modifications of rhein, resulting in notable improvements on pharmacological activities and druggabilities. This review offers a comprehensive overview and advanced update on the biological potential and structural-activity relationships (SARs) of various rhein derivatives, delineating the sites of structural modification and corresponding activity trends of rhein derivatives for future.
Collapse
Affiliation(s)
- Yindi Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Kaiqi Shang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Chengyu Ge
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Jing Fang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| |
Collapse
|
2
|
Munteanu C, Mârza SM, Papuc I. The immunomodulatory effects of vitamins in cancer. Front Immunol 2024; 15:1464329. [PMID: 39434876 PMCID: PMC11491384 DOI: 10.3389/fimmu.2024.1464329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Nutrition may affect animal health due to the strong link between them. Also, diets improve the healing process in various disease states. Cancer is a disease, where the harmful consequences of tumors severely impair the body. The information regarding the evolution of this disease is extrapolated from human to animal because there are few specific studies regarding nutritional needs in animals with cancer. Thus, this paper aims to review the literature regarding the immunomodulatory effects of vitamins in mammal cancer. An adequate understanding of the metabolism and requirements of nutrients for mammals is essential to ensuring their optimal growth, development, and health, regardless of their food sources. According to these: 1) Some species are highly dependent on vitamin D from food, so special attention must be paid to this aspect. Calcitriol/VDR signaling can activate pro-apoptotic proteins and suppress anti-apoptotic ones. 2) Nitric oxide (NO) production is modulated by vitamin E through inhibiting transcription nuclear factor kappa B (NF-κB) activation. 3) Thiamine supplementation could be responsible for the stimulation of tumor cell proliferation, survival, and resistance to chemotherapy. 4) Also, it was found that the treatment with NO-Cbl in dogs is a viable anti-cancer therapy that capitalizes on the tumor-specific properties of the vitamin B12 receptor. Therefore, diets should contain the appropriate class of compounds in adequate proportions. Also, the limitations of this paper are that some vitamins are intensively studied and at the same time regarding others, there is a lack of information, especially in animals. Therefore, some subsections are longer and more heavily debated than others.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, ;Romania
| |
Collapse
|
3
|
Elsebaie HA, Abdulla MH, Elsayed ZM, Shaldam MA, Tawfik HO, Morsy SN, Vaali Mohammed MA, Bin Traiki T, Elkaeed EB, Abdel-Aziz HA, Eldehna WM. Unveiling the potential of isatin-grafted phenyl-1,2,3-triazole derivatives as dual VEGFR-2/STAT-3 inhibitors: Design, synthesis and biological assessments. Bioorg Chem 2024; 151:107626. [PMID: 39013242 DOI: 10.1016/j.bioorg.2024.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
The use of VEGFR-2 inhibitors as a stand-alone treatment has proven to be ineffective in clinical trials due to the robustness of cellular response loops that lead to treatment resistance when only targeting VEGFR-2. The over-activation of the signal transducer/activator of transcription 3 (STAT-3) is expected to significantly impact treatment failure and resistance to VEGFR-2 inhibitors. In this study, we propose the concept of combined inhibition of VEGFR-2 and STAT-3 to combat induced STAT-3-mediated resistance to VEGFR-2 inhibition therapy. To explore this, we synthesized new isatin-grafted phenyl-1,2,3-triazole derivatives "6a-n" and "9a-f". Screening on PANC1 and PC3 cancer cell lines revealed that compounds 6b, 6 k, 9c, and 9f exhibited sub-micromolar ranges. The most promising molecules, 6b, 6 k, 9c, and 9f, demonstrated the highest inhibition when tested as dual inhibitors on VEGFR-2 (with IC50 range 53-82 nM, respectively) and STAT-3 (with IC50 range 5.63-10.25 nM). In particular, triazole 9f showed the best results towards both targets. Inspired by these findings, we investigated whether 9f has the ability to trigger apoptosis in prostate cancer PC3 cells via the assessment of the expression levels of the apoptotic markers Caspase-8, Bcl-2, Bax, and Caspase-9. Treatment of the PC3 cells with compound 9f significantly inhibited the protein expression levels of VEGFR-2 and STAT-3 kinases compared to the control.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samar N Morsy
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mansoor-Ali Vaali Mohammed
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
4
|
Zhang N, Wang Q, Lu Y, Wang F, He Z. The deubiquitinating enzyme USP11 regulates breast cancer progression by stabilizing PGAM5. Breast Cancer Res 2024; 26:135. [PMID: 39300548 DOI: 10.1186/s13058-024-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Breast cancer is common worldwide. Phosphoglycerate mutase 5 (PGAM5) belongs to the phosphoglycerate mutase family and plays an important role in many cancers. However, research on its role in breast cancer remains unclear. The present investigation highlights the significant expression of PGAM5 in breast cancer and its essential role in cell proliferation, invasion, apoptosis and the regulation of ferroptosis in breast cancer cells. Overexpression or knockdown of ubiquitin-specific protease 11 (USP11) promotes or inhibits the growth and metastasis of breast cancer cells, respectively, in vitro and in vivo. Mechanistically, USP11 stabilizes PGAM5 via de-ubiquitination, protecting it from proteasome-mediated degradation. In addition, the USP11/PGAM5 complex promotes breast cancer progression by activating iron death-related proteins, indicating that the synergy between USP11 and PGAM5 may serve as a predictor of disease outcome and provide a new treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Yunpeng Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226000, China.
| |
Collapse
|
5
|
Hekal HA, Hammad OM, El-Brollosy NR, Salem MM, Allayeh AK. Design, synthesis, docking, and antiviral evaluation of some novel pyrimidinone-based α-aminophosphonates as potent H1N1 and HCoV-229E inhibitors. Bioorg Chem 2024; 147:107353. [PMID: 38615475 DOI: 10.1016/j.bioorg.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.
Collapse
Affiliation(s)
- Hend A Hekal
- Chemistry Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Omar M Hammad
- Chemistry Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | | | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abdou K Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, 12622-Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Elsebaie HA, El-Moselhy TF, El-Bastawissy EA, Elberembally KM, Badi RM, Elkaeed EB, Shaldam MA, Eldehna WM, Tawfik HO. Development of new thieno[2,3-d]pyrimidines as dual EGFR and STAT3 inhibitors endowed with anticancer and pro-apoptotic activities. Bioorg Chem 2024; 143:107101. [PMID: 38183682 DOI: 10.1016/j.bioorg.2024.107101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
In part due to the resilience of cellular feedback pathways that develop therapeutic resistance to targeting the EGFR alone, using EGFR inhibitors alone was demonstrated to be unsuccessful in clinical trials. The over-activation of the signal transducer/activator of transcription 3 (STAT3) during the administration of an EGFR inhibitor is expected to play a substantial part in the failure and resistance of EGFR inhibitor treatment. Therein, we proposed a hypothesis that induced STAT3-mediated resistance to EGFR inhibition therapy could be addressed by a dual inhibition of EGFR and STAT3 method. To this end, we tried to discover new thieno[2,3-d]pyrimidine derivatives "5a-o". Results from the screening on A549 and MCF7 cancer cell lines revealed that compounds 5j and 5k showed two-digit nanomolar with appropriate safety towards the WI-38 cell line. The best molecules, 5j and 5k, were subjected to γ-radiation, and their cytotoxic efficacy didn't change after irradiation, demonstrating that not having to use it avoided its side effects. Compounds 5j and 5k demonstrated the highest inhibition when their potency was tested as dual inhibitors on EGFR 67 and 41 nM, respectively, and STAT3 5.52 and 3.34 nM, respectively, proved with in silico molecular docking and dynamic simulation. In light of the results presented above, the capacity of both powerful compounds to alter the cell cycle and initiate the apoptotic process in breast cancer MCF7 cells was investigated. Caspase-8, Bcl-2, Bax and Caspase-9 apoptotic indicators were studied.
Collapse
Affiliation(s)
- Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Eman A El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Kamel M Elberembally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
7
|
Abdelhamed AM, Hassan RA, Kadry HH, Helwa AA. Novel pyrazolo[3,4- d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity. RSC Med Chem 2023; 14:2640-2657. [PMID: 38107182 PMCID: PMC10718518 DOI: 10.1039/d3md00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
A novel series of 12 pyrazolo[3,4-d]pyrimidine derivatives were created and evaluated in vitro for their antiproliferative activity against the NCI 60 human tumor cell line panel. Compounds 12a-d displayed significant antitumor activity against MDA-MB-468 and T-47D (breast cancer cell lines), especially compound 12b, which exhibited the highest anticancer activity against MDA-MB-468 and T-47D cell lines with IC50 values of 3.343 ± 0.13 and 4.792 ± 0.21 μM, respectively compared to staurosporine with IC50 values of 6.358 ± 0.24 and 4.849 ± 0.22 μM. The most potent cytotoxic derivatives 12a-d were studied for their VEGFR-2 inhibitory activity to explore the mechanism of action of these substances. Compound 12b had potent activity against VEGFR-2 with an IC50 value of 0.063 ± 0.003 μM, compared to sunitinib with IC50 = 0.035 ± 0.012 μM. Moreover, there was an excellent reduction in HUVEC migratory potential that resulted in a significant disruption of wound healing patterns by 23% after 72 h of treatment with compound 12b. Cell cycle and apoptosis investigations showed that compound 12b could stop the cell cycle at the S phase and significantly increase total apoptosis in the MDA-MB-468 cell line by 18.98-fold compared to the control. Moreover, compound 12b increased the caspase-3 level in the MDA-MB-468 cell line by 7.32-fold as compared to the control.
Collapse
Affiliation(s)
- Ahmed M Abdelhamed
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Hanan H Kadry
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
8
|
Haroon F, Farwa U, Arif M, Raza MA, Sandhu ZA, El Oirdi M, Farhan M, Alhasawi MAI. Novel Para-Aminobenzoic Acid Analogs and Their Potential Therapeutic Applications. Biomedicines 2023; 11:2686. [PMID: 37893060 PMCID: PMC10604881 DOI: 10.3390/biomedicines11102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A "building block" is a key component that plays a substantial and critical function in the pharmaceutical research and development industry. Given its structural versatility and ability to undergo substitutions at both the amino and carboxyl groups, para-aminobenzoic acid (PABA) is a commonly used building block in pharmaceuticals. Therefore, it is great for the development of a wide range of novel molecules with potential medical applications. Anticancer, anti-Alzheimer's, antibacterial, antiviral, antioxidant, and anti-inflammatory properties have been observed in PABA compounds, suggesting their potential as therapeutic agents in future clinical trials. PABA-based therapeutic chemicals as molecular targets and their usage in biological processes are the primary focus of this review study. PABA's unique features make it a strong candidate for inclusion in a massive chemical database of molecules having drug-like effects. Based on the current literature, further investigation is needed to evaluate the safety and efficacy of PABA derivatives in clinical investigations and better understand the specific mechanism of action revealed by these compounds.
Collapse
Affiliation(s)
- Faisal Haroon
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Umme Farwa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Maimoona Arif
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Zeshan Ali Sandhu
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (U.F.); (M.A.); (Z.A.S.)
| | - Mohamed El Oirdi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.O.); (M.F.)
| | | |
Collapse
|