1
|
Liu Y, Zhou J, Yang Y, Chen X, Chen L, Wu Y. Intestinal Microbiota and Its Effect on Vaccine-Induced Immune Amplification and Tolerance. Vaccines (Basel) 2024; 12:868. [PMID: 39203994 PMCID: PMC11359036 DOI: 10.3390/vaccines12080868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This review provides the potential of intestinal microbiota in vaccine design and application, exploring the current insights into the interplay between the intestinal microbiota and the immune system, with a focus on its intermediary function in vaccine efficacy. It summarizes families and genera of bacteria that are part of the intestinal microbiota that may enhance or diminish vaccine efficacy and discusses the foundational principles of vaccine sequence design and the application of gut microbial characteristics in vaccine development. Future research should further investigate the use of multi-omics technologies to elucidate the interactive mechanisms between intestinal microbiota and vaccine-induced immune responses, aiming to optimize and improve vaccine design.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (J.Z.); (L.C.)
| | - Yangping Wu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
| |
Collapse
|
2
|
Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol 2024; 169:72. [PMID: 38459213 DOI: 10.1007/s00705-024-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Zafarian
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Macías-Parra M, Vidal-Vázquez P, Reyna-Figueroa J, Rodríguez-Weber MÁ, Moreno-Macías H, Hernández-Benavides I, Fortes-Gutiérrez S, Richardson VL, Vázquez-Cárdenas P. Immunogenicity of RV1 and RV5 vaccines administered in standard and interchangeable mixed schedules: a randomized, double-blind, non-inferiority clinical trial in Mexican infants. Front Public Health 2024; 12:1356932. [PMID: 38463163 PMCID: PMC10920348 DOI: 10.3389/fpubh.2024.1356932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Rotavirus-associated diarrheal diseases significantly burden healthcare systems, particularly affecting infants under five years. Both Rotarix™ (RV1) and RotaTeq™ (RV5) vaccines have been effective but have distinct application schedules and limited interchangeability data. This study aims to provide evidence on the immunogenicity, reactogenicity, and safety of mixed RV1-RV5 schedules compared to their standard counterparts. Methods This randomized, double-blind study evaluated the non-inferiority in terms of immunogenicity of mixed rotavirus vaccine schedules compared to standard RV1 and RV5 schedules in a cohort of 1,498 healthy infants aged 6 to 10 weeks. Participants were randomly assigned to one of seven groups receiving various combinations of RV1, and RV5. Standard RV1 and RV5 schedules served as controls of immunogenicity, reactogenicity, and safety analysis. IgA antibody levels were measured from blood samples collected before the first dose and one month after the third dose. Non-inferiority was concluded if the reduction in seroresponse rate in the mixed schemes, compared to the standard highest responding scheme, did not exceed the non-inferiority margin of -0.10. Reactogenicity traits and adverse events were monitored for 30 days after each vaccination and analyzed on the entire cohort. Results Out of the initial cohort, 1,365 infants completed the study. Immunogenicity analysis included 1,014 infants, considering IgA antibody titers ≥20 U/mL as seropositive. Mixed vaccine schedules demonstrated non-inferiority to standard schedules, with no significant differences in immunogenic response. Safety profiles were comparable across all groups, with no increased incidence of serious adverse events or intussusception. Conclusion The study confirms that mixed rotavirus vaccine schedules are non-inferior to standard RV1 and RV5 regimens in terms of immunogenicity and safety. This finding supports the flexibility of rotavirus vaccination strategies, particularly in contexts of vaccine shortage or logistic constraints. These results contribute to the global effort to optimize rotavirus vaccination programs for broader and more effective pediatric coverage.Clinical trial registration: ClinicalTrials.gov, NCT02193061.
Collapse
Affiliation(s)
| | - Patricia Vidal-Vázquez
- Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Jesús Reyna-Figueroa
- Unidad de Enfermedades Infecciosas y Epidemiología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | | | | | - Sofía Fortes-Gutiérrez
- Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Vesta Louise Richardson
- Coordinación del Servicio de Guardería para el Desarrollo Integral Infantil, Dirección de Prestaciones Económicas y Sociales, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| |
Collapse
|
4
|
Chavers T, Cates J, Burnett E, Parashar UD, Tate JE. Indirect protection from rotavirus vaccines: a systematic review. Expert Rev Vaccines 2024; 23:789-795. [PMID: 39167375 DOI: 10.1080/14760584.2024.2395534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Rotavirus vaccines may provide indirect protection by reducing transmission in the population and thus reducing disease burden. METHODS This systematic review summarizes estimates of indirect protection from rotavirus vaccines and the methods used to obtain these estimates. RESULTS We identified 71 studies published between 2009 and 2022 that provided 399 estimates of indirect protection from rotavirus vaccine. Most estimates (73%) evaluated hospitalizations due to rotavirus gastroenteritis as the outcome and unvaccinated children <5 years old as the agegroup (64%), but there was considerable variability in methods to evaluate indirect protection. For hospitalizations due to rotavirus gastroenteritis among unvaccinated children <5 years old, the median incidence rate ratio was 0.60 (IQR: 0.40-0.87, n = 110 estimates), the median relative percent change in percent positivity was 25% (IQR: 13-44%, n = 49 estimates), and the median relative percent change in absolute number of rotavirus positive tests or rotavirus-specific International Classification of Diseases codes was 42% (IQR: 16-66%, n = 40 estimates). CONCLUSIONS These findings broadly suggest rotavirus vaccines provide some indirect protection. There is a need to standardize measurement of indirect rotavirus vaccine protection, particularly using consistent outcomes and metrics, and stratifying results by standardized age groups and years since vaccine introduction.
Collapse
Affiliation(s)
- Tyler Chavers
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jordan Cates
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eleanor Burnett
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacqueline E Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
5
|
Middleton BF, Fathima P, Snelling TL, Morris P. Systematic review of the effect of additional doses of oral rotavirus vaccine on immunogenicity and reduction in diarrhoeal disease among young children. EClinicalMedicine 2022; 54:101687. [PMID: 36247922 PMCID: PMC9561686 DOI: 10.1016/j.eclinm.2022.101687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background Oral rotavirus vaccines have lower effectiveness in high child mortality settings. We evaluated the impact of additional dose(s) schedules of rotavirus vaccine on vaccine immunogenicity and reduction in episodes of gastroenteritis. Methods We searched Medline (via PubMed), Cochrane databases and ClinicalTrials.gov for randomised controlled trials from 1973 to February 2022, evaluating the immunological and clinical impact of additional dose vs standard dose oral rotavirus vaccine schedules. We extracted immunogenicity - proportion of children with evidence of anti-rotavirus IgA seroresponse, and clinical - proportion of children with at least one episode of severe rotavirus gastroenteritis, outcome data and used random effects meta-analysis where appropriate. We assessed the methodological quality of the studies using the Cochrane risk of bias tool. The study protocol was registered in PROSPERO (CRD42021261058). Findings We screened 536 items and included 7 clinical trials. Our results suggest moderate to high level evidence that an additional dose rotavirus vaccine schedule improves IgA vaccine immune response, including additional doses administered as a booster dose schedule >6 months old; IgA vaccine seroresponse 74·3% additional dose schedule vs 56·1% standard dose schedule RR 1·3 (95%CI, 1·15 - 1·48), and when administered to children who were seronegative at baseline; IgA vaccine seroresponse 48.2% additional dose schedule vs 29.6% standard dose schedule RR 1.86 (95%CI 1.27 to 2.72). Only one study evaluated reduction in gastroenteritis episodes and found little benefit in first year of life, 1·8% vs 2·0% RR 0·88 (95% CI, 0·52 to 1·48), or second year of life, 1·7% vs 2·9% RR 0·62 (95%CI, 0·31 - 1·23). Interpretation Administering an additional dose of oral rotavirus vaccines is likely to result in an improved vaccine immune response, including when administered as a booster dose to older children. Evidence of an impact on diarrhoeal disease is needed before additional dose rotavirus vaccine schedules can be recommended as vaccine policy. Funding BM was funded by the National Health and Medical Research Council, the Royal Australasian College of Physicians Paediatrics and Child Health Division, and the Australian Academy of Science.
Collapse
Affiliation(s)
- Bianca F. Middleton
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Parveen Fathima
- Health and Clinical Analytics, School of Public Health, University of Sydney, New South Wales, Australia
| | - Thomas L. Snelling
- Health and Clinical Analytics, School of Public Health, University of Sydney, New South Wales, Australia
| | - Peter Morris
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
6
|
Zaitoon H, Hanna S, Bamberger E. Impact of rotavirus vaccine implementation on Israeli children: a comparison between pre- and post-vaccination era. World J Pediatr 2022; 18:417-425. [PMID: 35389194 DOI: 10.1007/s12519-022-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Worldwide rotavirus vaccination has resulted in a substantial decrease in rotavirus-induced severe gastroenteritis and related hospitalizations among children. Still, the characterization of patients warranting hospitalization needs to be further elucidated. The purpose of the study is to compare the clinical and laboratory features of children hospitalized with acute rotavirus infection before and after the introduction of routine vaccination. METHODS This is a retrospective observational study. Participants were pediatric patients who presented to the Bnai Zion Medical Center pediatric emergency department and were diagnosed with rotavirus acute gastroenteritis between 2017 and 2019. RESULTS During the pre-vaccination period (2007-2009), 114 infants and young children (median age: 14 months, range: 1-72 months; 59 male, 55 female) were hospitalized for rotavirus-induced acute gastroenteritis with a rate of 11.71 positive rotavirus tests per 1000 emergency room visits. In the post-vaccination period (2012-2019), 168 infants and young children (median age: 17 months, range: 0-84 months; 90 male, 78 female) were hospitalized with a rate of 4.18 positive rotavirus tests per 1000 emergency room visits. There were no statistical differences between the two groups in gender, breast-feeding rates and sibling(s). The proportion of cases with moderate-to-severe dehydration was higher in the post-vaccination children than in the pre-vaccination children. CONCLUSIONS Rates of rotavirus-attributed acute gastroenteritis hospitalizations declined from the pre- to the post-vaccination period. Higher rates of dehydration were found in the post-vaccination children. Ongoing surveillance is warranted to better understand the implications of the vaccine.
Collapse
Affiliation(s)
- Hussein Zaitoon
- Department of Pediatrics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 47 Golomb St., 31048, Haifa, Israel.
| | - Shaden Hanna
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ellen Bamberger
- Department of Pediatrics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 47 Golomb St., 31048, Haifa, Israel
| |
Collapse
|
7
|
Cannon JL, Bonifacio J, Bucardo F, Buesa J, Bruggink L, Chan MCW, Fumian TM, Giri S, Gonzalez MD, Hewitt J, Lin JH, Mans J, Muñoz C, Pan CY, Pang XL, Pietsch C, Rahman M, Sakon N, Selvarangan R, Browne H, Barclay L, Vinjé J. Global Trends in Norovirus Genotype Distribution among Children with Acute Gastroenteritis. Emerg Infect Dis 2021; 27:1438-1445. [PMID: 33900173 PMCID: PMC8084493 DOI: 10.3201/eid2705.204756] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Noroviruses are a leading cause of acute gastroenteritis (AGE) among adults and children worldwide. NoroSurv is a global network for norovirus strain surveillance among children <5 years of age with AGE. Participants in 16 countries across 6 continents used standardized protocols for dual typing (genotype and polymerase type) and uploaded 1,325 dual-typed sequences to the NoroSurv web portal during 2016-2020. More than 50% of submitted sequences were GII.4 Sydney[P16] or GII.4 Sydney[P31] strains. Other common strains included GII.2[P16], GII.3[P12], GII.6[P7], and GI.3[P3] viruses. In total, 22 genotypes and 36 dual types, including GII.3 and GII.20 viruses with rarely reported polymerase types, were detected, reflecting high strain diversity. Surveillance data captured in NoroSurv enables the monitoring of trends in norovirus strains associated childhood AGE throughout the world on a near real-time basis.
Collapse
|
8
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
9
|
Casale M, Di Maio N, Verde V, Scianguetta S, Di Girolamo MG, Tomeo R, Roberti D, Misso S, Perrotta S. Response to Measles, Mumps and Rubella (MMR) Vaccine in Transfusion-Dependent Patients. Vaccines (Basel) 2021; 9:vaccines9060561. [PMID: 34072263 PMCID: PMC8227230 DOI: 10.3390/vaccines9060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Measles, mumps and rubella (MMR) still determine significant morbidity and mortality, although a highly effective vaccine is available. Postponing the MMR vaccination until 6 months after the last red blood cell (RBC) transfusion is recommended, but this delay is incompatible with chronic transfusions. The present study aimed at investigating the impact of blood transfusions on the immunogenicity of the MMR vaccine. In this observational study, a group of 45 transfusion- dependent (TD) patients was compared to 24 non-transfusion-dependent (NTD) patients. Immunity to measles was achieved in 35 (78%) TD and 21 (88%) NTD subjects (p = 0.7), to mumps in 36 (80%) TD and 21 (88%) NTD subjects (p = 0.99), and to rubella in 40 (89%) TD and 23 (96%) NTD subjects (p = 0.99). No significant difference was observed in the number of non-immune individuals or those with doubtful protection between the two groups (p > 0.05). The mean IgG value, assayed in 50 pre-storage leukoreduced RBC units, was 0.075 ± 0.064 mg/mL, ten times lower than the level assumed in blood units and considered detrimental to the immune response in TD patients. This work shows a favorable response to MMR vaccination in TD and NTDT patients and paves the way for further larger studies assessing the impact of chronic transfusions on vaccine response.
Collapse
Affiliation(s)
- Maddalena Casale
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
- Correspondence: ; Tel.: +39-08-1566-5698
| | - Nicoletta Di Maio
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | - Valentina Verde
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | - Saverio Scianguetta
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | | | - Rita Tomeo
- Immuno-Transfusion Service, ASL Caserta, 81031 Aversa, Italy; (M.G.D.G.); (R.T.); (S.M.)
| | - Domenico Roberti
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| | - Saverio Misso
- Immuno-Transfusion Service, ASL Caserta, 81031 Aversa, Italy; (M.G.D.G.); (R.T.); (S.M.)
| | - Silverio Perrotta
- Department of Women, Child and General and Specialized Surgery, University “Luigi Vanvitelli”, 80138 Naples, Italy; (N.D.M.); (V.V.); (S.S.); (D.R.); (S.P.)
| |
Collapse
|
10
|
McAdams D, Lakatos K, Estrada M, Chen D, Plikaytis B, Sitrin R, White JA. Quantification of trivalent non-replicating rotavirus vaccine antigens in the presence of aluminum adjuvant. J Immunol Methods 2021; 494:113056. [PMID: 33857473 PMCID: PMC8208242 DOI: 10.1016/j.jim.2021.113056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Parenterally administered rotavirus vaccines may overcome the low efficacy observed in resource-poor regions that use live oral formulations. We have reported work on a trivalent nonreplicating rotavirus vaccine (NRRV) for parenteral administration consisting of the recombinant tetanus toxoid P2 CD4 epitope fused to a truncated VP8* fragment (P2-VP8*) for the P[4], P[6], and P[8] serotypes of rotavirus adjuvanted with aluminum. An essential part of developing this vaccine candidate was devising quantification methods for each antigen in the trivalent NRRV in the presence of aluminum adjuvant. This report describes the development of quantitative inhibition enzyme-linked immunosorbent assays (ELISAs) for in vitro antigenicity determination of the adjuvanted trivalent NRRV using serotype-specific monoclonal antibodies (mAbs) against each of the P2-VP8* antigens. Adjuvanted trivalent vaccine samples are titrated and incubated with a constant concentration of specific mAbs against each NRRV P2-VP8* antigen variant. Unbound mAbs are measured by ELISA to indirectly quantify the amount of each antigen present in the trivalent vaccine. Sensitive, specific, and reproducible inhibition ELISAs were developed and qualified for each antigen and used for final product quantification and release testing without desorption of the vaccine antigen.
Collapse
Affiliation(s)
- David McAdams
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Kyle Lakatos
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Marcus Estrada
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Dexiang Chen
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | | | - Robert Sitrin
- The Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | - Jessica A White
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA.
| |
Collapse
|
11
|
Donato CM, Pingault N, Demosthenous E, Roczo-Farkas S, Bines JE. Characterisation of a G2P[4] Rotavirus Outbreak in Western Australia, Predominantly Impacting Aboriginal Children. Pathogens 2021; 10:350. [PMID: 33809709 PMCID: PMC8002226 DOI: 10.3390/pathogens10030350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
In May, 2017, an outbreak of rotavirus gastroenteritis was reported that predominantly impacted Aboriginal children ≤4 years of age in the Kimberley region of Western Australia. G2P[4] was identified as the dominant genotype circulating during this period and polyacrylamide gel electrophoresis revealed the majority of samples exhibited a conserved electropherotype. Full genome sequencing was performed on representative samples that exhibited the archetypal DS-1-like genome constellation: G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and phylogenetic analysis revealed all genes of the outbreak samples were closely related to contemporary Japanese G2P[4] samples. The outbreak samples consistently fell within conserved sub-clades comprised of Hungarian and Australian G2P[4] samples from 2010. The 2017 outbreak variant was not closely related to G2P[4] variants associated with prior outbreaks in Aboriginal communities in the Northern Territory. When compared to the G2 component of the RotaTeq vaccine, the outbreak variant exhibited mutations in known antigenic regions; however, these mutations are frequently observed in contemporary G2P[4] strains. Despite the level of vaccine coverage achieved in Australia, outbreaks continue to occur in vaccinated populations, which pose challenges to regional areas and remote communities. Continued surveillance and characterisation of emerging variants are imperative to ensure the ongoing success of the rotavirus vaccination program in Australia.
Collapse
Affiliation(s)
- Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
- Department of Paediatrics, The University of Melbourne, Parkville 3010, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Nevada Pingault
- Department of Health Western Australia, Communicable Disease Control Directorate, Perth 6004, Australia;
| | - Elena Demosthenous
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Susie Roczo-Farkas
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville 3052, Australia; (E.D.); (S.R.-F.); (J.E.B.)
- Department of Paediatrics, The University of Melbourne, Parkville 3010, Australia
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville 3052, Australia
| |
Collapse
|
12
|
Gyaase S, Asante KP, Adeniji E, Boahen O, Cairns M, Owusu-Agyei S. Potential effect modification of RTS,S/AS01 malaria vaccine efficacy by household socio-economic status. BMC Public Health 2021; 21:240. [PMID: 33509156 PMCID: PMC7845116 DOI: 10.1186/s12889-021-10294-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Background In the phase III RTS,S /AS01 trial, significant heterogeneity in efficacy of the vaccine across study sites was seen. Question on whether variations in socio - economic status (SES) of participant contributed to the heterogeinity of the vaccine efficacy (VE) remains unknown. Methods Data from the Phase III RTS,S /AS01 trial in children aged 5–17 months in Kintampo were re-analysed. SES of each child was derived from the Kintampo Health and Demographic Surveillance System, using principal component analysis of household assets. Extended Cox regression was used to estimate the interaction between RTS,S/AS01 VE and household SES. Results Protective efficacy of the RTS,S/AS0 vaccine significantly varied by participant’s household SES, thus increase in household SES was associated with an increase in protective efficacy (P-value = 0.0041). Effect modification persisted after adjusting for age at first vaccination, gender, distance from community to the health facility, child’s haemoglobin level, household size, place of residence and mothers’ educational level. Conclusion Household SES may be a proxy for malaria transmission intensity. The study showed a significant modification of the RTS,S/AS01 malaria vaccine efficacy by the different levels of child’s household socio - economic status. Trial registration Efficacy of GSK Biologicals’ candidate malaria vaccine (25049) against malaria disease in infants and children in Africa. NCT00866619 prospectively registered on 20 March 2009.
Collapse
Affiliation(s)
- Stephaney Gyaase
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana.,Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Elisha Adeniji
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | - Owusu Boahen
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | - Matthew Cairns
- Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana. .,Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK. .,Institute of Health Research, University of Health and Allied Sciences, Ho, Volta, Ghana.
| |
Collapse
|
13
|
Bosco N, Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun 2021; 22:289-303. [PMID: 33875817 PMCID: PMC8054695 DOI: 10.1038/s41435-021-00126-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023]
Abstract
The microbiome plays a fundamental role in the maturation, function, and regulation of the host-immune system from birth to old age. In return, the immune system has co-evolved a mutualistic relationship with trillions of beneficial microbes residing our bodies while mounting efficient responses to fight invading pathogens. As we age, both the immune system and the gut microbiome undergo significant changes in composition and function that correlate with increased susceptibility to infectious diseases and reduced vaccination responses. Emerging studies suggest that targeting age-related dysbiosis can improve health- and lifespan, in part through reducing systemic low-grade inflammation and immunosenescence-two hallmarks of the aging process. However-a cause and effect relationship of age-related dysbiosis and associated functional declines in immune cell functioning have yet to be demonstrated in clinical settings. This review aims to (i) give an overview on hallmarks of the aging immune system and gut microbiome, (ii) discuss the impact of age-related changes in the gut commensal community structure (introduced as microb-aging) on host-immune fitness and health, and (iii) summarize prebiotic- and probiotic clinical intervention trials aiming to reinforce age-related declines in immune cell functioning through microbiome modulation or rejuvenation.
Collapse
Affiliation(s)
- Nabil Bosco
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Cell Biology, Cellular Metabolism, EPFL Innovation Park, Nestlé SA, Lausanne, Switzerland
| | - Mario Noti
- grid.419905.00000 0001 0066 4948Nestlé Research, Nestlé Institute of Health Sciences, Department of Gastrointestinal Health, Immunology, Vers-Chez-les-Blancs, Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
14
|
Harnessing early life immunity to develop a pediatric HIV vaccine that can protect through adolescence. PLoS Pathog 2020; 16:e1008983. [PMID: 33180867 PMCID: PMC7660516 DOI: 10.1371/journal.ppat.1008983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Otero CE, Langel SN, Blasi M, Permar SR. Maternal antibody interference contributes to reduced rotavirus vaccine efficacy in developing countries. PLoS Pathog 2020; 16:e1009010. [PMID: 33211756 PMCID: PMC7676686 DOI: 10.1371/journal.ppat.1009010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.
Collapse
Affiliation(s)
- Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
16
|
Groome MJ, Glass RI. Winning the Battle Against Rotavirus Diarrhea…One Step at a Time. J Infect Dis 2020; 222:1587-1588. [PMID: 32123895 DOI: 10.1093/infdis/jiaa086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michelle J Groome
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roger I Glass
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
FUT2 Secretor Status Influences Susceptibility to VP4 Strain-Specific Rotavirus Infections in South African Children. Pathogens 2020; 9:pathogens9100795. [PMID: 32992488 PMCID: PMC7601103 DOI: 10.3390/pathogens9100795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
Gastroenteritis is a preventable cause of morbidity and mortality worldwide. Rotavirus vaccination has significantly reduced the disease burden, but the sub-optimal vaccine efficacy observed in low-income regions needs improvement. Rotavirus VP4 'spike' proteins interact with FUT2-defined, human histo-blood group antigens on mucosal surfaces, potentially influencing strain circulation and the efficacy of P[8]-based rotavirus vaccines. Secretor status was investigated in 500 children <5 years-old hospitalised with diarrhoea, including 250 previously genotyped rotavirus-positive cases (P[8] = 124, P[4] = 86, and P[6] = 40), and 250 rotavirus-negative controls. Secretor status genotyping detected the globally prevalent G428A single nucleotide polymorphism (SNP) and was confirmed by Sanger sequencing in 10% of participants. The proportions of secretors in rotavirus-positive cases (74%) were significantly higher than in the rotavirus-negative controls (58%; p < 0.001). The rotavirus genotypes P[8] and P[4] were observed at significantly higher proportions in secretors (78%) than in non-secretors (22%), contrasting with P[6] genotypes with similar proportions amongst secretors (53%) and non-secretors (47%; p = 0.001). This suggests that rotavirus interacts with secretors and non-secretors in a VP4 strain-specific manner; thus, secretor status may partially influence rotavirus VP4 wild-type circulation and P[8] rotavirus vaccine efficacy. The study detected a mutation (rs1800025) ~50 bp downstream of the G428A SNP that would overestimate non-secretors in African populations when using the TaqMan® SNP Genotyping Assay.
Collapse
|
18
|
Middleton BF, Danchin M, Quinn H, Ralph AP, Pingault N, Jones M, Estcourt M, Snelling T. Retrospective Case-Control Study of 2017 G2P[4] Rotavirus Epidemic in Rural and Remote Australia. Pathogens 2020; 9:pathogens9100790. [PMID: 32993048 PMCID: PMC7601783 DOI: 10.3390/pathogens9100790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023] Open
Abstract
Background: A widespread G2P[4] rotavirus epidemic in rural and remote Australia provided an opportunity to evaluate the performance of Rotarix and RotaTeq rotavirus vaccines, ten years after their incorporation into Australia’s National Immunisation Program. Methods: We conducted a retrospective case-control analysis. Vaccine-eligible children with laboratory-confirmed rotavirus infection were identified from jurisdictional notifiable infectious disease databases and individually matched to controls from the national immunisation register, based on date of birth, Aboriginal status and location of residence. Results: 171 cases met the inclusion criteria; most were Aboriginal and/or Torres Strait Islander (80%) and the median age was 19 months. Of these cases, 65% and 25% were fully or partially vaccinated, compared to 71% and 21% of controls. Evidence that cases were less likely than controls to have received a rotavirus vaccine dose was weak, OR 0.79 (95% CI, 0.46–1.34). On pre-specified subgroup analysis, there was some evidence of protection among children <12 months (OR 0.48 [95% CI, 0.22–1.02]), and among fully vs. partially vaccinated children (OR 0.65 [95% CI, 0.42–1.01]). Conclusion: Despite the known effectiveness of rotavirus vaccination, a protective effect of either rotavirus vaccine during a G2P[4] outbreak in these settings among predominantly Aboriginal children was weak, highlighting the ongoing need for a more effective rotavirus vaccine and public health strategies to better protect Aboriginal children.
Collapse
Affiliation(s)
- Bianca F. Middleton
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin 0810, Australia; (A.P.R.); (T.S.)
- Division of Women, Children and Youth, Royal Darwin Hospital, Darwin 0810, Australia
- Correspondence: ; Tel.: +61-4-0209-3321
| | - Margie Danchin
- Department of Paediatrics, University of Melbourne, Melbourne 3052, Australia;
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
- Department of General Medicine, Royal Children’s Hospital, Melbourne 3052, Australia
| | - Helen Quinn
- The National Centre for Immunisation Research and Surveillance (NCIRS), The Children’s Hospital at Westmead, Sydney 2145, Australia;
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead 2145, Australia
| | - Anna P. Ralph
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin 0810, Australia; (A.P.R.); (T.S.)
- Division of Medicine, Royal Darwin Hospital, Darwin 0810, Australia
| | - Nevada Pingault
- Department of Health Western Australia, Communicable Disease Control Directorate, Perth 6004, Australia;
| | - Mark Jones
- Health and Clinical Analytics, School of Public Health, The University of Sydney, Sydney 2006, Australia; (M.J.); (M.E.)
| | - Marie Estcourt
- Health and Clinical Analytics, School of Public Health, The University of Sydney, Sydney 2006, Australia; (M.J.); (M.E.)
| | - Tom Snelling
- Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin 0810, Australia; (A.P.R.); (T.S.)
- Wesfarmers Centre for Vaccine and Infectious Diseases, Telethon Kids Institute, Perth 6009, Australia
- School of Public Health, Curtin University, Perth 6102, Australia
| |
Collapse
|
19
|
Loureiro Tonini MA, Pires Gonçalves Barreira DM, Bueno de Freitas Santolin L, Bondi Volpini LP, Gagliardi Leite JP, Le Moullac-Vaidye B, Le Pendu J, Cruz Spano L. FUT2, Secretor Status and FUT3 Polymorphisms of Children with Acute Diarrhea Infected with Rotavirus and Norovirus in Brazil. Viruses 2020; 12:E1084. [PMID: 32992989 PMCID: PMC7600990 DOI: 10.3390/v12101084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 01/22/2023] Open
Abstract
Host susceptibility according to human histo-blood group antigens (HBGAs) is widely known for norovirus infection, but is less described for rotavirus. Due to the variable HBGA polymorphism among populations, we aimed to evaluate the association between HBGA phenotypes (ABH, Lewis and secretor status) and susceptibility to rotavirus and norovirus symptomatic infection, and the polymorphisms of FUT2 and FUT3, of children from southeastern Brazil. Paired fecal-buccal specimens from 272 children with acute diarrhea were used to determine rotavirus/norovirus genotypes and HBGAs phenotypes/genotypes, respectively. Altogether, 100 (36.8%) children were infected with rotavirus and norovirus. The rotavirus P[8] genotype predominates (85.7%). Most of the noroviruses (93.8%) belonged to genogroup II (GII). GII.4 Sydney represented 76% (35/46) amongst five other genotypes. Rotavirus and noroviruses infected predominantly children with secretor status (97% and 98.5%, respectively). However, fewer rotavirus-infected children were Lewis-negative (8.6%) than the norovirus-infected ones (18.5%). FUT3 single nucleotide polymorphisms (SNP) occurred mostly at the T59G > G508A > T202C > C314T positions. Our results reinforce the current knowledge that secretors are more susceptible to infection by both rotavirus and norovirus than non-secretors. The high rate for Lewis negative (17.1%) and the combination of SNPs, beyond the secretor status, may reflect the highly mixed population in Brazil.
Collapse
Affiliation(s)
- Marco André Loureiro Tonini
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Débora Maria Pires Gonçalves Barreira
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Luciana Bueno de Freitas Santolin
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - Lays Paula Bondi Volpini
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro 4365, RJ, Brazil;
| | | | - Jacques Le Pendu
- CRCINA, Inserm, Université de Nantes, F-44000 Nantes, France; (B.L.M.-V.); (J.L.P.)
| | - Liliana Cruz Spano
- Laboratory of Virology and Infectious Gastroenteritis, Pathology Department, Health Science Center, Federal University of Espírito Santo, Maruípe, Vitória 1468, ES, Brazil; (D.M.P.G.B.); (L.B.d.F.S.); (L.P.B.V.); (L.C.S.)
| |
Collapse
|
20
|
Real-world effectiveness of rotavirus vaccines, 2006-19: a literature review and meta-analysis. LANCET GLOBAL HEALTH 2020; 8:e1195-e1202. [PMID: 32827481 DOI: 10.1016/s2214-109x(20)30262-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since licensure in 2006, rotavirus vaccines have been introduced in more than 100 countries. The efficacy of rotavirus vaccines is variable in settings with different child mortality levels. We did an updated review of the published literature to assess the real-world effectiveness of rotavirus vaccines in a range of settings. METHODS In this literature review and meta-analysis, we included observational, post-licensure studies of rotavirus vaccines, published from Jan 1, 2006, to Dec 31, 2019, in English, with laboratory-confirmed rotavirus as the endpoint. In addition to product-specific results for Rotarix (GlaxoSmithKline Biologicals, Rixensart, Belgium) or RotaTeq (Merck, West Point, PA, USA), we included Rotarix and RotaTeq mixed series, and non-product-specific vaccine effectiveness estimates from countries where Rotarix and RotaTeq are both available. Studies of other infant rotavirus vaccines were excluded because little or no post-licensure data were available. We fitted random-effects regression models to estimate vaccine effectiveness among children younger than 12 months and aged 12-23 months. On the basis of 2017 UNICEF mortality estimates for children younger than 5 years, countries were stratified as having low (lowest quartile), medium (second quartile), or high mortality (third and fourth quartiles). FINDINGS We identified and screened 1703 articles, of which 60 studies from 32 countries were included. 31 studies were from countries with low child mortality, eight were from medium-mortality countries, and 21 were from high-mortality countries. Rotarix vaccine effectiveness against laboratory-confirmed rotavirus among children younger than 12 months old was 86% (95% CI 81-90) in low-mortality countries, 77% (66-85) in medium-mortality countries, and 63% (54-70) in high-mortality countries. Rotarix vaccine effectiveness among children aged 12-23 months was 86% (81-90) in low-mortality countries, 54% (23-73) in medium-mortality countries, and 58% (38-72) in high-mortality countries. RotaTeq vaccine effectiveness among children younger than 12 months was 86% (76-92) in low-mortality countries and 66% (51-76) in high-mortality countries. RotaTeq vaccine effectiveness among children aged 12-23 months was 84% (79-89) in low-mortality countries. There was no substantial heterogeneity (I2 range: 0-36%). Median vaccine effectiveness in low-mortality countries was similar for Rotarix (83%; IQR 78-91), RotaTeq (85%; 81-92), mixed series (86%; 70-91), and non-product-specific (89%; 75-91) vaccination. INTERPRETATION Rotavirus vaccines were effective in preventing rotavirus diarrhoea, with higher performance in countries with lower child mortality. FUNDING None.
Collapse
|
21
|
Lakatos K, McAdams D, White JA, Chen D. Formulation and preclinical studies with a trivalent rotavirus P2-VP8 subunit vaccine. Hum Vaccin Immunother 2020; 16:1957-1968. [PMID: 31995444 PMCID: PMC7482676 DOI: 10.1080/21645515.2019.1710412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023] Open
Abstract
More effective rotavirus vaccines are essential for preventing extensive diarrheal morbidity and mortality in children under five years of age in low-resource regions. Nonreplicating rotavirus vaccines (NRRV) administered parenterally provide an alternate vaccination method to the current licensed oral vaccine. Live attenuated vaccines and may generate increased efficacy in low-resource settings because the parenteral administration route bypasses some of the challenges associated with oral administration, including differences in intestinal environments. Work described here supports development of a trivalent NRRV vaccine for parenteral administration to avoid complications of the gastrointestinal route. Recombinant VP8* subunit proteins representing some of the most prevalent strains of rotavirus infecting humans - DS-1 (P[4]), 1076 (P[6]), and Wa (P[8]) - were combined with an aluminum adjuvant and the P2 epitope of tetanus toxoid to enhance the immune response to this NRRV antigen. Vaccine formulation development included selection of aluminum hydroxide (Alhydrogel®) as an appropriate adjuvant as well as an optimal buffer to maintain antigen stability and optimize antigen binding to the adjuvant. Characterization assays were used to select the lead vaccine formulation and monitor formulation stability. The NRRV liquid formulation was stable for one year at 2°C to 8°C and four weeks at 37°C. Immunogenicity of the NRRV formulation was evaluated using a guinea pig model, where we demonstrated that the adjuvant provided a 20-fold increase in neutralization titer against a homologous antigen and that the P2-fusion also enhanced the serum neutralizing antibody responses. This vaccine candidate is currently being evaluated in human clinical trials.
Collapse
Affiliation(s)
- Kyle Lakatos
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - David McAdams
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Jessica A. White
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| | - Dexiang Chen
- Medical Devices and Health Technologies Global Program, Formulation Technologies, PATH, Seattle, WA, USA
| |
Collapse
|
22
|
Zhang Y, Wu Q, Zhou M, Luo Z, Lv L, Pei J, Wang C, Chai B, Sui B, Huang F, Fu ZF, Zhao L. Composition of the murine gut microbiome impacts humoral immunity induced by rabies vaccines. Clin Transl Med 2020; 10:e161. [PMID: 32898335 PMCID: PMC7443138 DOI: 10.1002/ctm2.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gut microbiome plays a crucial role in modulating human and animal immune responses. Rabies is a fatal zoonosis causing encephalitis in mammals and vaccination is the most effective method to control and eliminate rabies. The relationship between the gut microbiome and humoral immunity post rabies vaccination has not been investigated yet. METHODS Mice orally administrated with a cocktail of broad-spectrum antibiotics were inoculated with rabies vaccines, and humoral immune response was analyzed at indicated time points. The 16S ribosomal RNA (16S rRNA) gene sequencing was performed on fecal samples from groups in vancomycin-treated and untreated mice. Mice were immunized with rabies vaccines and virus-neutralizing antibody (VNA) levels were measured, resulting in VNA high (H) and low (L) groups. Then 16S rRNA gene sequencing was performed on fecal samples from H and L group mice. RESULTS After antibiotic (Abx) treatment, mice had decreased levels of rabies virus (RABV)-specific IgM, IgG, and virus-neutralizing antibody compared with untreated mice. Abx-treated mice had fewer T follicular helper cells, germinal center B cells, and antibody secreting cells (ASCs) in lymph nodes than did untreated mice. Gut microbiome facilitated secondary immune responses by increasing the generation of ASCs. Treatment with vancomycin alone had a similarly impaired effect on the humoral immune responses compared with Abx-treated mice. From the natural population group of mice received rabies vaccines, VNA titers vary significantly and the abundance of Clostridiales and Lachnospiraceae was positively associated with the antibody titers in mice. CONCLUSIONS Our results provide the evidence that the gut microbiome impacts humoral immunity post rabies vaccination, and further investigation of the mechanism will help the development of novel adjuvants and vaccines.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Qiong Wu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Ming Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Zhaochen Luo
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Lei Lv
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Jie Pei
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Caiqian Wang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Benjie Chai
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Baokun Sui
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Fei Huang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Zhen F. Fu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| | - Ling Zhao
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Preventive Veterinary Medicine of Hubei ProvinceCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
23
|
Munyaka PM, Blanc F, Estellé J, Lemonnier G, Leplat JJ, Rossignol MN, Jardet D, Plastow G, Billon Y, Willing BP, Rogel-Gaillard C. Discovery of Predictors of Mycoplasma hyopneumoniae Vaccine Response Efficiency in Pigs: 16S rRNA Gene Fecal Microbiota Analysis. Microorganisms 2020; 8:E1151. [PMID: 32751315 PMCID: PMC7464067 DOI: 10.3390/microorganisms8081151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 01/18/2023] Open
Abstract
The gut microbiota comprises a large and diverse community of bacteria that play a significant role in swine health. Indeed, there is a tight association between the enteric immune system and the overall composition and richness of the microbiota, which is key in the induction, training and function of the host immunity, and may therefore, influence the immune response to vaccination. Using vaccination against Mycoplasma hyopneumoniae (M. hyo) as a model, we investigated the potential of early-life gut microbiota in predicting vaccine response and explored the post-vaccination dynamics of fecal microbiota at later time points. At 28 days of age (0 days post-vaccination; dpv), healthy piglets were vaccinated, and a booster vaccine was administered at 21 dpv. Blood samples were collected at 0, 21, 28, 35, and 118 dpv to measure M. hyo-specific IgG levels. Fecal samples for 16S rRNA gene amplicon sequencing were collected at 0, 21, 35, and 118 dpv. The results showed variability in antibody response among individual pigs, whilst pre-vaccination operational taxonomic units (OTUs) primarily belonging to Prevotella, [Prevotella], Anaerovibrio, and Sutterella appeared to best-predict vaccine response. Microbiota composition did not differ between the vaccinated and non-vaccinated pigs at post-vaccination time points, but the time effect was significant irrespective of the animals' vaccination status. Our study provides insight into the role of pre-vaccination gut microbiota composition in vaccine response and emphasizes the importance of studies on full metagenomes and microbial metabolites aimed at deciphering the role of specific bacteria and bacterial genes in the modulation of vaccine response.
Collapse
Affiliation(s)
- Peris M. Munyaka
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (G.P.); (B.P.W.)
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Jean-Jacques Leplat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Marie-Noëlle Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Déborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (G.P.); (B.P.W.)
- Livestock Gentec, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; (G.P.); (B.P.W.)
| | - Claire Rogel-Gaillard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France; (P.M.M.); (F.B.); (J.E.); (G.L.); (J.-J.L.); (M.-N.R.); (D.J.)
| |
Collapse
|
24
|
Abstract
As of 2019, four rotavirus vaccines have been prequalified by the WHO for use worldwide. This review highlights current knowledge regarding rotavirus vaccines available, and provides a brief summary of the rotavirus vaccine pipeline.
Collapse
|
25
|
Overview of the Development, Impacts, and Challenges of Live-Attenuated Oral Rotavirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030341. [PMID: 32604982 PMCID: PMC7565912 DOI: 10.3390/vaccines8030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Safety, efficacy, and cost-effectiveness are paramount to vaccine development. Following the isolation of rotavirus particles in 1969 and its evidence as an aetiology of severe dehydrating diarrhoea in infants and young children worldwide, the quest to find not only an acceptable and reliable but cost-effective vaccine has continued until now. Four live-attenuated oral rotavirus vaccines (LAORoVs) (Rotarix®, RotaTeq®, Rotavac®, and RotaSIIL®) have been developed and licensed to be used against all forms of rotavirus-associated infection. The efficacy of these vaccines is more obvious in the high-income countries (HIC) compared with the low- to middle-income countries (LMICs); however, the impact is far exceeding in the low-income countries (LICs). Despite the rotavirus vaccine efficacy and effectiveness, more than 90 countries (mostly Asia, America, and Europe) are yet to implement any of these vaccines. Implementation of these vaccines has continued to suffer a setback in these countries due to the vaccine cost, policy, discharging of strategic preventive measures, and infrastructures. This review reappraises the impacts and effectiveness of the current live-attenuated oral rotavirus vaccines from many representative countries of the globe. It examines the problems associated with the low efficacy of these vaccines and the way forward. Lastly, forefront efforts put forward to develop initial procedures for oral rotavirus vaccines were examined and re-connected to today vaccines.
Collapse
|
26
|
Lestari FB, Vongpunsawad S, Wanlapakorn N, Poovorawan Y. Rotavirus infection in children in Southeast Asia 2008-2018: disease burden, genotype distribution, seasonality, and vaccination. J Biomed Sci 2020; 27:66. [PMID: 32438911 PMCID: PMC7239768 DOI: 10.1186/s12929-020-00649-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/27/2020] [Indexed: 01/30/2023] Open
Abstract
Background Rotaviruses (RVs) are recognized as a major cause of acute gastroenteritis (AGE) in infants and young children worldwide. Here we summarize the virology, disease burden, prevalence, distribution of genotypes and seasonality of RVs, and the current status of RV vaccination in Southeast Asia (Cambodia, Indonesia, Lao People’s Democratic Republic, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam) from 2008 to 2018. Methods Rotavirus infection in Children in Southeast Asia countries was assessed using data from Pubmed and Google Scholars. Most countries in Southeast Asia have not yet introduced national RV vaccination programs. We exclude Brunei Darussalam, and Timor Leste because there were no eligible studies identified during that time. Results According to the 2008–2018 RV surveillance data for Southeast Asia, 40.78% of all diarrheal disease in children were caused by RV infection, which is still a major cause of morbidity and mortality in children under 5 years old in Southeast Asia. Mortality was inversely related to socioeconomic status. The most predominant genotype distribution of RV changed from G1P[8] and G2P[4] into the rare and unusual genotypes G3P[8], G8P[8], and G9P[8]. Although the predominat strain has changed, but the seasonality of RV infection remains unchanged. One of the best strategies for decreasing the global burden of the disease is the development and implementation of effective vaccines. Conclusions The most predominant genotype distribution of RV was changed time by time. Rotavirus vaccine is highly cost effective in Southeast Asian countries because the ratio between cost per disability-adjusted life years (DALY) averted and gross domestic product (GDP) per capita is less than one. These data are important for healthcare practitioners and officials to make appropriate policies and recommendations about RV vaccination.
Collapse
Affiliation(s)
- Fajar Budi Lestari
- Inter-Department of Biomedical Science, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Groome MJ, Fairlie L, Morrison J, Fix A, Koen A, Masenya M, Jose L, Madhi SA, Page N, McNeal M, Dally L, Cho I, Power M, Flores J, Cryz S. Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine: a multisite, randomised, double-blind, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:851-863. [PMID: 32251641 PMCID: PMC7322558 DOI: 10.1016/s1473-3099(20)30001-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
Background A monovalent, parenteral, subunit rotavirus vaccine was well tolerated and immunogenic in adults in the USA and in toddlers and infants in South Africa, but elicited poor responses against heterotypic rotavirus strains. We aimed to evaluate safety and immunogenicity of a trivalent vaccine formulation (P2-VP8-P[4],[6],[8]). Methods A double-blind, randomised, placebo-controlled, dose-escalation, phase 1/2 study was done at three South African research sites. Healthy adults (aged 18–45 years), toddlers (aged 2–3 years), and infants (aged 6–8 weeks, ≥37 weeks' gestation, and without previous receipt of rotavirus vaccination), all without HIV infection, were eligible for enrolment. In the dose-escalation phase, adults and toddlers were randomly assigned in blocks (block size of five) to receive 30 μg or 90 μg of vaccine, or placebo, and infants were randomly assigned in blocks (block size of four) to receive 15 μg, 30 μg, or 90 μg of vaccine, or placebo. In the expanded phase, infants were randomly assigned in a 1:1:1:1 ratio to receive 15 μg, 30 μg, or 90 μg of vaccine, or placebo, in block sizes of four. Participants, parents of participants, and clinical, data, and laboratory staff were masked to treatment assignment. Adults received an intramuscular injection of vaccine or placebo in the deltoid muscle on the day of randomisation (day 0), day 28, and day 56; toddlers received a single injection of vaccine or placebo in the anterolateral thigh on day 0. Infants in both phases received an injection of vaccine or placebo in the anterolateral thigh on days 0, 28, and 56, at approximately 6, 10, and 14 weeks of age. Primary safety endpoints were local and systemic reactions (grade 2 or worse) within 7 days and adverse events and serious adverse events within 28 days after each injection in all participants who received at least one injection. Primary immunogenicity endpoints were analysed in infants in either phase who received all planned injections, had blood samples analysed at the relevant timepoints, and presented no major protocol violations considered to have an effect on the immunogenicity results of the study, and included serum anti-P2-VP8 IgA, IgG, and neutralising antibody geometric mean titres and responses measured 4 weeks after the final injection in vaccine compared with placebo groups. This trial is registered with ClinicalTrials.gov, NCT02646891. Findings Between Feb 15, 2016, and Dec 22, 2017, 30 adults (12 each in the 30 μg and 90 μg groups and six in the placebo group), 30 toddlers (12 each in the 30 μg and 90 μg groups and six in the placebo group), and 557 infants (139 in the 15 μg group, 140 in the 30 μg group, 139 in the 90 μg group, and 139 in the placebo group) were randomly assigned, received at least one dose, and were assessed for safety. There were no significant differences in local or systemic adverse events, or unsolicited adverse events, between vaccine and placebo groups. There were no serious adverse events within 28 days of injection in adults, whereas one serious adverse event occurred in a toddler (febrile convulsion in the 30 μg group) and 23 serious adverse events (four in placebo, ten in 15 μg, four in 30 μg, and five in 90 μg groups) occurred among 20 infants, most commonly respiratory tract infections. One death occurred in an infant within 28 days of injection due to pneumococcal meningitis. In 528 infants (130 in placebo, 132 in 15 μg, 132 in 30 μg, and 134 in 90 μg groups), adjusted anti-P2-VP8 IgG seroresponses (≥4-fold increase from baseline) to P[4], P[6], and P[8] antigens were significantly higher in the 15 μg, 30 μg, and 90 μg groups (99–100%) than in the placebo group (10–29%; p<0·0001). Although significantly higher than in placebo recipients (9–10%), anti-P2-VP8 IgA seroresponses (≥4-fold increase from baseline) to each individual antigen were modest (20–34%) across the 15 μg, 30 μg, and 90 μg groups. Adjusted neutralising antibody seroresponses in infants (≥2·7-fold increase from baseline) to DS-1 (P[4]), 1076 (P[6]), and Wa (P[8]) were higher in vaccine recipients than in placebo recipients: p<0·0001 for all comparisons. Interpretation The trivalent P2-VP8 vaccine was well tolerated, with promising anti-P2-VP8 IgG and neutralising antibody responses across the three vaccine P types. Our findings support advancing the vaccine to efficacy testing. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Michelle J Groome
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Lee Fairlie
- Wits Reproductive Health and HIV Institute, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Morrison
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anthonet Koen
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maysseb Masenya
- Wits Reproductive Health and HIV Institute, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa Jose
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola Page
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Len Dally
- The Emmes Corporation, Rockville, MD, USA
| | - Iksung Cho
- PATH, Washington, DC, USA; Novavax, Gaithersburg, MD, USA
| | | | | | | |
Collapse
|
28
|
Lai J, Nguyen C, Tabwaia B, Nikuata A, Baueri N, Timeon E, Diaaldeen M, Iuta T, Ozturk MH, Moore A, Hall A, Nyambat B, Davis S, Rahman A, Erasmus W, Fox K, Russell F. Temporal decline in diarrhea episodes and mortality in Kiribati children two years following rotavirus vaccine introduction, despite high malnutrition rates: a retrospective review. BMC Infect Dis 2020; 20:207. [PMID: 32164562 PMCID: PMC7069014 DOI: 10.1186/s12879-020-4874-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/11/2020] [Indexed: 11/24/2022] Open
Abstract
Background Kiribati introduced rotavirus vaccine in 2015. To estimate the impact of rotavirus vaccine on acute gastroenteritis (AGE) and severe acute malnutrition (SAM) among children under 5 in Kiribati, a retrospective review of inpatient and outpatient AGE and hospitalized SAM was undertaken. Methods Inpatient data for admissions and hospital deaths due to AGE, SAM and all-causes were collected for children under 5 from all hospitals on the main island, Tarawa, from January 2010–December 2013 (pre-rotavirus vaccine) and January 2016–September 2017 (post-rotavirus vaccine). National outpatient diarrhea data were collected from January 2010 to August 2017 for under 5. An interrupted time-series analysis was undertaken to estimate the effect of rotavirus vaccine on the rates of inpatient and outpatient AGE, inpatient SAM; and inpatient case fatality rates for AGE and SAM, were calculated pre- and post-rotavirus vaccine introduction. Results The incidence rate of AGE admissions from Tarawa and national AGE outpatient presentations significantly declined by 37 and 44%, respectively, 2 years following rotavirus vaccine introduction. There was a significant decline in the percentage of AGE contributing to all-cause under 5 admissions (12·8% vs. 7·2%, p < 0·001) and all-cause under-five mortality (15·9% vs. 5·7%, p = 0·006) pre- and post-rotavirus vaccine introduction. The estimated incidence rate of inpatient SAM decreased by 24% in under 5 s, 2 years following rotavirus vaccine introduction. Conclusions AGE morbidity and mortality and hospitalized SAM rates have declined following rotavirus vaccine introduction in Kiribati children.
Collapse
Affiliation(s)
- Jana Lai
- Murdoch Children's Research Institute, Melbourne, Australia. .,Australian National University, Canberra, Australia.
| | - Cattram Nguyen
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Beia Tabwaia
- Ministry of Health and Medical Services, Tarawa, Kiribati
| | | | | | - Eretii Timeon
- Ministry of Health and Medical Services, Tarawa, Kiribati
| | | | | | | | | | | | - Batmunkh Nyambat
- WHO Regional Office for the Western Pacific, Manila, Philippines
| | | | | | | | - Kimberley Fox
- WHO Regional Office for the Western Pacific, Manila, Philippines.,Center for Disease Control and Prevention, Atlanta, USA
| | - Fiona Russell
- Murdoch Children's Research Institute, Melbourne, Australia.,Centre for International Child Health, Dept. of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
29
|
Antirotavirus IgA seroconversion rates in children who receive concomitant oral poliovirus vaccine: A secondary, pooled analysis of Phase II and III trial data from 33 countries. PLoS Med 2019; 16:e1003005. [PMID: 31887139 PMCID: PMC6936798 DOI: 10.1371/journal.pmed.1003005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the success of rotavirus vaccines over the last decade, rotavirus remains a leading cause of severe diarrheal disease among young children. Further progress in reducing the burden of disease is inhibited, in part, by vaccine underperformance in certain settings. Early trials suggested that oral poliovirus vaccine (OPV), when administered concomitantly with rotavirus vaccine, reduces rotavirus seroconversion rates after the first rotavirus dose with modest or nonsignificant interference after completion of the full rotavirus vaccine course. Our study aimed to identify a range of individual-level characteristics, including concomitant receipt of OPV, that affect rotavirus vaccine immunogenicity in high- and low-child-mortality settings, controlling for individual- and country-level factors. Our central hypothesis was that OPV administered concomitantly with rotavirus vaccine reduced rotavirus vaccine immunogenicity. METHODS AND FINDINGS Pooled, individual-level data from GlaxoSmithKline's Phase II and III clinical trials of the monovalent rotavirus vaccine (RV1), Rotarix, were analyzed, including 7,280 vaccinated infants (5-17 weeks of age at first vaccine dose) from 22 trials and 33 countries/territories (5 countries/territories with high, 13 with moderately low, and 15 with very low child mortality). Two standard markers for immune response were examined including antirotavirus immunoglobulin A (IgA) seroconversion (defined as the appearance of serum antirotavirus IgA antibodies in subjects initially seronegative) and serum antirotavirus IgA titer, both collected approximately 4-12 weeks after administration of the last rotavirus vaccine dose. Mixed-effect logistic regression and mixed-effect linear regression of log-transformed data were used to identify individual- and country-level predictors of seroconversion (dichotomous) and antibody titer (continuous), respectively. Infants in high-child-mortality settings had lower odds of seroconverting compared with infants in low-child-mortality settings (odds ratio [OR] = 0.48, 95% confidence interval [CI] 0.43-0.53, p < 0.001). Similarly, among those who seroconverted, infants in high-child-mortality settings had lower IgA titers compared with infants in low-child-mortality settings (mean difference [β] = 0.83, 95% CI 0.77-0.90, p < 0.001). Infants who received OPV concomitantly with both their first and their second doses of rotavirus vaccine had 0.63 times the odds of seroconverting (OR = 0.63, 95% CI 0.47-0.84, p = 0.002) compared with infants who received OPV but not concomitantly with either dose. In contrast, among infants who seroconverted, OPV concomitantly administered with both the first and second rotavirus vaccine doses was found to be positively associated with antirotavirus IgA titer (β = 1.28, 95% CI 1.07-1.53, p = 0.009). Our findings may have some limitations in terms of generalizability to routine use of rotavirus vaccine because the analysis was limited to healthy infants receiving RV1 in clinical trial settings. CONCLUSIONS Our findings suggest that OPV given concomitantly with RV1 was a substantial contributor to reduced antirotavirus IgA seroconversion, and this interference was apparent after the second vaccine dose of RV1, as with the original clinical trials that our reanalysis is based on. However, our findings do suggest that the forthcoming withdrawal of OPV from the infant immunization schedule globally has the potential to improve RV1 performance.
Collapse
|
30
|
Middleton BF, Jones MA, Waddington CS, Danchin M, McCallum C, Gallagher S, Leach AJ, Andrews R, Kirkwood C, Cunliffe N, Carapetis J, Marsh JA, Snelling T. The ORVAC trial protocol: a phase IV, double-blind, randomised, placebo-controlled clinical trial of a third scheduled dose of Rotarix rotavirus vaccine in Australian Indigenous infants to improve protection against gastroenteritis. BMJ Open 2019; 9:e032549. [PMID: 31727664 PMCID: PMC6886966 DOI: 10.1136/bmjopen-2019-032549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Rotavirus vaccines were introduced into the Australian National Immunisation Program in 2007. Despite this, Northern Territory Indigenous children continue to be hospitalised with rotavirus at a rate more than 20 times higher than non-Indigenous children in other Australian jurisdictions, with evidence of waning protection in the second year of life. We hypothesised that scheduling an additional (third) dose of oral human rotavirus vaccine (Rotarix, GlaxoSmithKline) for children aged 6 to <12 months would improve protection against clinically significant all-cause gastroenteritis. METHODS AND ANALYSIS This Bayesian adaptive clinical trial will investigate whether routinely scheduling an additional dose of Rotarix for Australian Indigenous children aged 6 to <12 months old confers significantly better protection against clinically important all-cause gastroenteritis than the current two-dose schedule at 2 and 4 months old. There are two coprimary endpoints: (1) seroconversion from baseline serum anti-rotavirus immunoglobulin A (IgA) titre <20 U/mL prior to an additional dose of Rotarix/placebo to serum anti-rotavirus IgA titre >20 U/mL following the administration of the additional dose of Rotarix/placebo and (2) time from randomisation to medical attendance (up to age 36 months old) for which the primary reason is acute gastroenteritis/diarrhoea. Secondary endpoints include the change in anti-rotavirus IgA log titre, time to hospitalisation for all-cause diarrhoea and for rotavirus-confirmed gastroenteritis/diarrhoea, and rotavirus notification. Analysis will be based on Bayesian inference with adaptive sample size. ETHICS, REGISTRATION AND DISSEMINATION Ethics approval has been granted by Central Australian Human Research Ethics Committee (HREC-16-426) and Human Research Ethics Committee of the Northern Territory Department of Health and Menzies School of Health Research (HREC-2016-2658). Study investigators will ensure the trial is conducted in accordance with the principles of the Declaration of Helsinki and with the ICH Guidelines for Good Clinical Practice. Individual participant consent will be obtained. Results will be disseminated via peer-reviewed publication. The trial is registered with Clinicaltrials.gov (NCT02941107) and important modifications to this protocol will be updated. TRIAL REGISTRATION NUMBER NCT02941107; Pre-results.
Collapse
Affiliation(s)
- Bianca Fleur Middleton
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark A Jones
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, West Perth, Western Australia, Australia
| | - Claire S Waddington
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, West Perth, Western Australia, Australia
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Margaret Danchin
- Vaccine and Immunisation Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Carly McCallum
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, West Perth, Western Australia, Australia
| | - Sarah Gallagher
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Amanda Jane Leach
- Child Health Division, Menzies School of Health Research, Charles Darwin Univesity, Darwin, Northern Territory, Australia
| | - Ross Andrews
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Brisbane, Queensland, Australia
| | - Carl Kirkwood
- Enteric and Diarrheal Diseases, Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Nigel Cunliffe
- Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Jonathan Carapetis
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, West Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, Centre for Child Health Research, University of Western Australia, Crawley, Western Australia, Australia
| | - Julie A Marsh
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, West Perth, Western Australia, Australia
| | - Tom Snelling
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, West Perth, Western Australia, Australia
| |
Collapse
|
31
|
Parenterally Administered P24-VP8* Nanoparticle Vaccine Conferred Strong Protection against Rotavirus Diarrhea and Virus Shedding in Gnotobiotic Pigs. Vaccines (Basel) 2019; 7:vaccines7040177. [PMID: 31698824 PMCID: PMC6963946 DOI: 10.3390/vaccines7040177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Current live rotavirus vaccines are costly with increased risk of intussusception due to vaccine replication in the gut of vaccinated children. New vaccines with improved safety and cost-effectiveness are needed. In this study, we assessed the immunogenicity and protective efficacy of a novel P24-VP8* nanoparticle vaccine using the gnotobiotic (Gn) pig model of human rotavirus infection and disease. Three doses of P24-VP8* (200 μg/dose) intramuscular vaccine with Al(OH)3 adjuvant (600 μg) conferred significant protection against infection and diarrhea after challenge with virulent Wa strain rotavirus. This was indicated by the significant reduction in the mean duration of diarrhea, virus shedding in feces, and significantly lower fecal cumulative consistency scores in post-challenge day (PCD) 1-7 among vaccinated pigs compared to the mock immunized controls. The P24-VP8* vaccine was highly immunogenic in Gn pigs. It induced strong VP8*-specific serum IgG and Wa-specific virus-neutralizing antibody responses from post-inoculation day 21 to PCD 7, but did not induce serum or intestinal IgA antibody responses or a strong effector T cell response, which are consistent with the immunization route, the adjuvant used, and the nature of the non-replicating vaccine. The findings are highly translatable and thus will facilitate clinical trials of the P24-VP8* nanoparticle vaccine.
Collapse
|
32
|
Pollock L, Bennett A, Jere KC, Dube Q, Mandolo J, Bar-Zeev N, Heyderman RS, Cunliffe NA, Iturriza-Gomara M. Nonsecretor Histo-blood Group Antigen Phenotype Is Associated With Reduced Risk of Clinical Rotavirus Vaccine Failure in Malawian Infants. Clin Infect Dis 2019; 69:1313-1319. [PMID: 30561537 PMCID: PMC6763638 DOI: 10.1093/cid/ciy1067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) Lewis/secretor phenotypes predict genotype-specific susceptibility to rotavirus gastroenteritis (RVGE). We tested the hypothesis that nonsecretor/Lewis-negative phenotype leads to reduced vaccine take and lower clinical protection following vaccination with G1P[8] rotavirus vaccine (RV1) in Malawian infants. METHODS A cohort study recruited infants receiving RV1 at age 6 and 10 weeks. HBGA phenotype was determined by salivary enzyme-linked immunosorbent assay (ELISA). RV1 vaccine virus shedding was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in stool collected on alternate days for 10 days post-immunization. Plasma rotavirus-specific immunoglobulin A was determined by ELISA pre- and post-immunization. In a case-control study, HBGA phenotype distribution was compared between RV1-vaccinated infants with RVGE and 1:1 age-matched community controls. Rotavirus genotype was determined by RT-PCR. RESULTS In 202 cohort participants, neither overall vaccine virus fecal shedding nor seroconversion differed by HBGA phenotype. In 238 case-control infants, nonsecretor phenotype was less common in infants with clinical vaccine failure (odds ratio [OR], 0.39; 95% confidence interval [CI], 0.20-0.75). Nonsecretor phenotype was less common in infants with P[8] RVGE (OR, 0.12; 95% CI, 0.03-0.50) and P[4] RVGE (OR, 0.17; 95% CI, 0.04-0.75). Lewis-negative phenotype was more common in infants with P[6] RVGE (OR, 3.2; 95% CI, 1.4-7.2). CONCLUSIONS Nonsecretor phenotype was associated with reduced risk of rotavirus vaccine failure. There was no significant association between HBGA phenotype and vaccine take. These data refute the hypothesis that high prevalence of nonsecretor/Lewis-negative phenotypes contributes to lower rotavirus vaccine effectiveness in Malawi.
Collapse
Affiliation(s)
- Louisa Pollock
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Aisleen Bennett
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Khuzwayo C Jere
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- Medical Laboratory Sciences Department, University of Malawi, Blantyre
| | - Queen Dube
- Department of Paediatrics, College of Medicine, University of Malawi, Blantyre
| | - Jonathan Mandolo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
| | - Naor Bar-Zeev
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi, Blantyre
- Division of Infection and Immunity, University College London, United Kingdom
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, United Kingdom
| |
Collapse
|
33
|
Feng N, Hu L, Ding S, Sanyal M, Zhao B, Sankaran B, Ramani S, McNeal M, Yasukawa LL, Song Y, Prasad BV, Greenberg HB. Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. J Clin Invest 2019; 129:3839-3851. [PMID: 31403468 PMCID: PMC6715378 DOI: 10.1172/jci128382] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
We previously generated 32 rotavirus-specific (RV-specific) recombinant monoclonal antibodies (mAbs) derived from B cells isolated from human intestinal resections. Twenty-four of these mAbs were specific for the VP8* fragment of RV VP4, and most (20 of 24) were non-neutralizing when tested in the conventional MA104 cell-based assay. We reexamined the ability of these mAbs to neutralize RVs in human intestinal epithelial cells including ileal enteroids and HT-29 cells. Most (18 of 20) of the "non-neutralizing" VP8* mAbs efficiently neutralized human RV in HT-29 cells or enteroids. Serum RV neutralization titers in adults and infants were significantly higher in HT-29 than MA104 cells and adsorption of these sera with recombinant VP8* lowered the neutralization titers in HT-29 but not MA104 cells. VP8* mAbs also protected suckling mice from diarrhea in an in vivo challenge model. X-ray crystallographic analysis of one VP8* mAb (mAb9) in complex with human RV VP8* revealed that the mAb interaction site was distinct from the human histo-blood group antigen binding site. Since MA104 cells are the most commonly used cell line to detect anti-RV neutralization activity, these findings suggest that prior vaccine and other studies of human RV neutralization responses may have underestimated the contribution of VP8* antibodies to the overall neutralization titer.
Collapse
Affiliation(s)
- Ningguo Feng
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Siyuan Ding
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California, USA
| | - Boyang Zhao
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Monica McNeal
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Yanhua Song
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,Institute of Veterinary Medicine, Jiangsu Academy of Agriculture Science, Nanjing, China
| | - B.V. Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
34
|
Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front Microbiol 2019; 10:1305. [PMID: 31333592 PMCID: PMC6616116 DOI: 10.3389/fmicb.2019.01305] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
The human immune system and the microbiota co-evolve, and their balanced relationship is based on crosstalk between the two systems through the course of life. This tight association and the overall composition and richness of the microbiota play an important role in the modulation of host immunity and may impact the immune response to vaccination. The availability of innovative technologies, such as next-generation sequencing (NGS) and correlated bioinformatics tools, allows a deeper investigation of the crosstalk between the microbiota and human immune responses. This review discusses the current knowledge on the influence of the microbiota on the immune response to vaccination and novel tools to deeply analyze the impact of the microbiome on vaccine responses.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Raffaela Olivieri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Velasquez DE, Jiang B. Evolution of P[8], P[4], and P[6] VP8* genes of human rotaviruses globally reported during 1974 and 2017: possible implications for rotavirus vaccines in development. Hum Vaccin Immunother 2019; 15:3003-3008. [PMID: 31124743 DOI: 10.1080/21645515.2019.1619400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Non-replicating parenteral rotavirus (RV) vaccine candidates are in development in an attempt to overcome the lower efficacy and effectiveness of oral RV vaccines in low-income countries. One of the leading candidates is a truncated recombinant VP8* protein, expressed in Escherichia coli from original sequences of the prototype RV genotypes P[8], P[4], or P[6] isolated before 1983. Since VP8* is highly variable, it was considered useful to examine the evolutionary changes of RV strains reported worldwide over time in relation to the three P2-VP8 vaccine strains. Here, we retrieved from the GenBank 6,366 RV VP8* gene sequences of P[8], P[4], or P[6] strains isolated between 1974 and 2017, in 77 countries, and compared them with those of the three P2-VP8 vaccine strains: Wa (USA, 1974, G1P[8]), DS-1 (USA, 1976, G2P[4]), and 1076 (Sweden, 1983, G2P[6]). Phylogenetic analysis showed that 94.9% (4,328/4,560), 99.8% (1,141/1,143), and 100% (663/663) of the P[8], P[4], and P[6] strains, respectively, reported globally between 1974 and 2018 belong to non-vaccine lineages. These P[8], P[4], and P[6] RV strains have a mean of 9%, 5%, and 6% amino acid difference from the corresponding vaccine strains. Additionally, in the USA, the mean percentage difference between all the P[8] RV strains and the original Wa strain increased over time: 4% (during 1974-1980), 5% (1988-1991), and 9% (2005-2013). Our analysis substantiated high evolutionary changes in VP8* of the P[8], P[4], and P[6] major RV strains and their increasing variations from the candidate subunit vaccine strains over time. These findings may have implications for the development of new RV vaccines.
Collapse
Affiliation(s)
- Daniel E Velasquez
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
36
|
Liu Y, Guo T, Yu Q, Zhang H, Du J, Zhang Y, Xia S, Yang H, Li Q. Association of human leukocyte antigen alleles and supertypes with immunogenicity of oral rotavirus vaccine given to infants in China. Medicine (Baltimore) 2018; 97:e12706. [PMID: 30290669 PMCID: PMC6200448 DOI: 10.1097/md.0000000000012706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rotavirus (RV) vaccines show distinct immunogenicity in dozens of clinical trials, which is associated with multiple host and environmental factors. Previous research has demonstrated that the highly polymorphic human leukocyte antigen (HLA) system plays an essential role in regulating immune response to a variety of vaccines. This study aims to investigate the relationship between HLA polymorphisms and immunogenicity of RV vaccine.A nested case-control study was carried out among infants enrolled in phase III clinical trial of trivalent human-lamb reassortant vaccine (RV3) in Henan province, China. Serum RV specific immunoglobulin A (RV-IgA) was detected before and after a 3-dose vaccination series, followed by calculation of seroconversion rates. Seroconversion was defined as a 4-fold or greater increase in RV-IgA titers between pre-vaccination and 1-month post-dose 3 vaccination. The infants who seroconverted were defined as responders, and the others without seroconversion were considered as non-responders. Their HLA genotypes were obtained by using the sequence-based typing method. The HLA allele and supertype frequencies of 2 groups were analyzed statistically.Eighty-three of 133 infants seroconverted after vaccination. Twenty-one HLA-A, 45 HLA-B, 24 HLA-Cw, 29 HLA-DRB1 and 16 HLA-DQB1 distinct alleles were detected. The frequency of HLA-B4001 (corrected P = .01, adjusted OR = 0.152, 95% CI = 0.048-0.475) in non-responder group was significantly higher than that in responder group. Furthermore, significant association was found between HLA-B44 supertype (corrected P = .02, adjusted OR = 0.414, 95% CI = 0.225-0.763) and RV non-response.Certain HLA allele (HLA-B4001) and supertype (HLA-B44) are potentially associated with non-response after immunization with the novel RV3 vaccine in Chinese infants.
Collapse
Affiliation(s)
- Yueyue Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming
- National Institutes for Food and Drug Control, Beijing, China
| | - Tai Guo
- National Institutes for Food and Drug Control, Beijing, China
| | - Qingchuan Yu
- National Institutes for Food and Drug Control, Beijing, China
| | - Haowen Zhang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Jialiang Du
- National Institutes for Food and Drug Control, Beijing, China
| | - Yunqi Zhang
- Yunnan University, Kunming, China
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | - Shengli Xia
- Henan Center for Disease Control and Prevention, Zhengzhou
| | - Huan Yang
- Center for Drug Evaluation, Beijing, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming
| |
Collapse
|
37
|
Harris VC. The Significance of the Intestinal Microbiome for Vaccinology: From Correlations to Therapeutic Applications. Drugs 2018; 78:1063-1072. [PMID: 29943376 PMCID: PMC6061423 DOI: 10.1007/s40265-018-0941-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite unprecedented advances in understanding the intestinal microbiome, its potential to improve fields such as vaccinology has yet to be realized. This review briefly outlines the immunologic potential of the intestinal microbiome for vaccinology and highlights areas where the microbiome holds specific promise in vaccinology. Oral rotavirus vaccine effectiveness in low-income countries is used as a case study to describe how the intestinal microbiome may be employed to improve a vaccine's immunogenicity. A top-down, evidence-based approach is proposed to identify effective microbiota-based applications for vaccine improvement. Applying evidence from field studies in pertinent populations that correlate microbiome composition with vaccine effectiveness to appropriate experimental platforms will lead to the identification of safe, vaccine-supporting microbiota targets that are relevant to populations in need of improvement in vaccine-induced immunity.
Collapse
Affiliation(s)
- Vanessa C Harris
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands.
- Department of Medicine, Division of Infectious Diseases and Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|