1
|
de Roo AM, Vondeling GT, Boer M, Murray K, Postma MJ. The global health and economic burden of chikungunya from 2011 to 2020: a model-driven analysis on the impact of an emerging vector-borne disease. BMJ Glob Health 2024; 9:e016648. [PMID: 39627007 PMCID: PMC11624783 DOI: 10.1136/bmjgh-2024-016648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Chikungunya is a mosquito-borne arboviral disease posing an emerging global public health threat. Understanding the global burden of chikungunya is critical for designing effective prevention and control strategies. However, current estimates of the economic and health impact of chikungunya remain limited and are potentially underestimated. This study aims to provide a comprehensive overview of the chikungunya burden worldwide. METHODS We analysed the global burden of chikungunya between 2011 and 2020 and calculated disability-adjusted life years (DALYs) and direct and indirect costs using a data-driven simulation model. The main outcomes were the number of cases, the total DALY burden, and the direct and indirect costs of acute and chronic chikungunya between 2011 and 2020. RESULTS Our study revealed a total of 18.7 million chikungunya cases in 110 countries between 2011 and 2020, causing 1.95 million DALYs. Most of this burden was found in the Latin American and Caribbean region. The total economic burden caused by chikungunya over these 10 years was estimated at $2.8 billion in direct costs and $47.1 billion in indirect costs worldwide. Long-term chronic illness was the source of most costs and DALYs. CONCLUSION Chikungunya has a higher disease burden than was previously estimated and costs related to the disease are substantial. Especially in combination with its unpredictable nature, chikungunya could significantly impact local health systems. Insights from this study could inform decision makers on the impact of chikungunya on population health and help them to appropriately allocate resources to protect vulnerable populations from this debilitating disease.
Collapse
Affiliation(s)
- Adrianne Marije de Roo
- Valneva Austria GmbH, Vienna, Austria
- Department of Health Sciences, University of Groningen, Groningen, Netherlands
| | | | - Martijn Boer
- ASC Academics BV, Groningen, Groningen, Netherlands
| | - Kristy Murray
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Maarten Jacobus Postma
- Department of Health Sciences, University of Groningen, Groningen, Groningen, Netherlands
- Department of Economics, Econometrics & Finance, University of Groningen, Groningen, Netherlands
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Badung, Indonesia
- Division of Pharmacology and Therapy, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Ulug D, Touray M, Hazal Gulsen S, Cimen H, Hazir C, Bode HB, Hazir S. A taste of a toxin paradise: Xenorhabdus and Photorhabdus bacterial secondary metabolites against Aedes aegypti larvae and eggs. J Invertebr Pathol 2024; 205:108126. [PMID: 38734162 DOI: 10.1016/j.jip.2024.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Aedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X. szentirmaii, X. cabanillasii and P. kayaii against Ae. aegypti eggs and larvae and identified the bioactive larvicidal compound in X. szentirmaii using The EasyPACId method. Among the three tested bacterial species, X. cabanillasii exhibited the highest (96%) egg hatching inhibition and larvicidal activity (100% mortality), whereas P. kayaii was the least effective species in our study. EasyPACId method revealed that bioactive larvicidal compound in the bacterial supernatant was fabclavine. Fabclavines obtained from promoter exchange mutants of different bacterial species such as X. cabanillasii, X. budapestensis, X. indica, X. szentirmaii, X. hominckii and X. stockiae were effective against mosquito larvae. Results show that these bacterial metabolites have potential to be used in integrated pest management (IPM) programmes of mosquitoes.
Collapse
Affiliation(s)
- Derya Ulug
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye.
| | - Mustapha Touray
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| | - Sebnem Hazal Gulsen
- Department of Plant and Animal Production, Kocarli Vocational School, Aydin Adnan Menderes University, 09100 Aydin, Türkiye
| | - Harun Cimen
- Recombinant DNA and Recombinant Protein Application and Research Center, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| | - Canan Hazir
- Aydin Health Services Vocational School, Adnan Menderes University, 09100 Aydin, Türkiye
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany; Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Center for Synthetic Microbiology, Phillips University Marburg, 35043 Marburg, Germany; Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany; Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, 60325, Germany
| | - Selcuk Hazir
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09100, Aydin, Türkiye
| |
Collapse
|
3
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
4
|
Lukindu M, Mukwaya LG, Masembe C, Birungi J. Behavioral Changes of Some Arboviral Vectors in Zika Forest: A Concern for Emerging and Re-Emerging Diseases in Uganda. Vector Borne Zoonotic Dis 2023; 23:653-661. [PMID: 37669008 DOI: 10.1089/vbz.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Background: The increasing reports on emerging/re-emerging arboviral disease outbreaks or epidemics in Sub-Saharan Africa have been impacted by factors, including the changing climate plus human activities that have resulted in land cover changes. These factors influence the prevalence, incidence, behavior, and distribution of vectors and vector-borne diseases. In this study, we assessed the potential effect of land cover changes on the distribution and oviposition behavior of some arboviral vectors in Zika forest, Uganda, which has decreased by an estimated 7 hectares since 1952 due to an increase in anthropogenic activities in the forest and its periphery. Materials and Methods: Immature mosquitoes were collected using bamboo pots and placed at various levels of a steel tower in the forest and at different intervals from the forest periphery to areas among human dwellings. Collections were conducted for 20 months. Results and Conclusion: Inside the forest, 22,280 mosquitoes were collected belonging to four arboviral vectors: Aedes aegypti, Aedes africanus, Aedes apicoargenteus, and Aedes cumminsii. When compared with similar studies conducted in the forest in 1964, there was a change from a sylvatic to a tendency of peridomestic behavior in A. africanus, which was now collected among human dwellings. There was an unexpected change in the distribution of A. aegypti, which was not only collected outside the forest as in previous reports but also collected in the forest. Conversely, A. cumminsii originally collected in the forest expanded its ranges with collections outside the forest in this study. Aedes simpsoni maintained its distribution range outside the forest among agricultural sites. We suspect that land cover changes were favorable to most of the arboviral vectors hence enhancing their proliferation and habitat range. This potentially increases the transmission of arboviral diseases in the area, hence impacting the epidemiology of emerging/remerging diseases in Uganda.
Collapse
Affiliation(s)
- Martin Lukindu
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Louis G Mukwaya
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Science, College of Natural Sciences School, Makerere University, Kampala, Uganda
| | - Josephine Birungi
- Department of Entomology, Uganda Virus Research Institute, Entebbe, Uganda
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
5
|
Maestre-Serrano R, Flórez-Rivadeneira Z, Castro-Camacho JM, Ochoa-Bohórquez L, Gómez-Camargo D, Pareja-Loaiza P, Ponce-García G, Flores AE. Evaluation of susceptibility to organophosphates in populations of Aedes aegypti in La Guajira, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:296-304. [PMID: 37433166 PMCID: PMC10549234 DOI: 10.7705/biomedica.6677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/18/2023] [Indexed: 07/13/2023]
Abstract
Introduction. Dengue is a public health problem in La Guajira region. Control has focused on the vector using insecticides, including organophosphates. Objective. To evaluate the state of susceptibility to organophosphates insecticides in fifteen Aedes aegypti (L.) populations in La Guajira, Colombia. Materials and methods. We collected samples of third-instar larvae and adult mosquitoes of Ae. aegypti in the municipalities of Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita, Villanueva. Bioassays for temefos, malathion, and pirimiphos-methyl were carried out following the methodology of the World Health Organization, and the bottle technique using the guidance of the Centers for Disease Control and Prevention. Susceptibility to temefos was determined through the resistance ratio between lethal concentration 50 and lethal concentration 95; for the compounds temefos, malathion and pirimiphos-methyl, susceptibility was calculated using diagnostic dose and diagnostic time in the populations evaluated. Rockefeller susceptible strain was used as a control. Results: All evaluated populations of Ae. aegypti from La Guajira were found to be susceptible to temefos (ratio resistance to CL50<5.0; ratio resistance to CL95<5.0; 98 - 100 % mortality); pirimiphosmethyl (99 - 100 % mortality), and malathion (100 % mortality). Conclusion. Based on the results, the use of temefos, malathion, and pirimiphosmethyl is feasible for the control of Ae. aegypti in the evaluated populations.
Collapse
Affiliation(s)
- Ronald Maestre-Serrano
- Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Barranquilla, ColombiaFacultad de Ciencias de la Salud, Universidad Libre, seccional Barranquilla, Barranquilla, Colombia.
| | - Zulibeth Flórez-Rivadeneira
- Facultad de Ciencias de la Salud, Universidad Libre, seccional Barranquilla, Barranquilla, Colombia; Secretaría de Salud Departamental, Gobernación de La Guajira, Riohacha, Colombia.
| | | | - Linda Ochoa-Bohórquez
- Facultad de Ciencias de la Salud, Universidad Libre, seccional Barranquilla, Barranquilla, Colombia.
| | - Doris Gómez-Camargo
- Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias, Colombia.
| | - Paula Pareja-Loaiza
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia.
| | - Gustavo Ponce-García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México; † Autor fallecido.
| | - Adriana E Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México.
| |
Collapse
|
6
|
Ricardo Dos Santos Correia P, Duarte de Freitas J, André Zeoly L, Silva Porto R, José da Paz Lima D. Discovery and structure-activity relationship of Morita-Baylis-Hillman adducts as larvicides against dengue mosquito vector, Aedes aegypti (Diptera: Culicidae). Bioorg Med Chem 2023; 90:117315. [PMID: 37253304 DOI: 10.1016/j.bmc.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Neglected tropical diseases (NTDs) have become a significant public health problem worldwide, notably the life-threatening dengue hemorrhagic fever borne by the Aedes aegypti mosquito. Thus, mosquito vector control measures remain essential in public health vector surveillance and control to combat Aedes-borne infections. Therefore, a series of MBH adducts were synthesized and assessed towards the fourth instar mosquito larvae, Aedes aegypti, along with the preliminary structure-activity relationship (SAR). Noteworthy, this compound class might be synthetized by an efficient eco-friendly synthesismethod and a rapid route for the synthesis of commercial larvicide through a single synthetic step. The bioassays showed that this compound class is a promising larvicide to control Aedes aegypti mosquito larvae, mainly 3g, with an LC50 of 41.35 µg/mL, which was higher than evaluated positive controls. Nevertheless, it is a viable larvicidalhit candidate for further hit-to-leadproperties optimization of its biphenyl backbone scaffold with enhanced insecticidalbioactivity. Moreover, scanning electron microscopy analysis suggested a disruption of the osmoregulatory/ionoregulatory functions by the complete deterioration of the terminal exoskeleton hindgut and anal papillae. Therefore, this new study shows the larvicidal efficacy of the tested compounds against the Aedes aegypti larvae.
Collapse
Affiliation(s)
- Paulo Ricardo Dos Santos Correia
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | | | - Lucas André Zeoly
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Ricardo Silva Porto
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | - Dimas José da Paz Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil.
| |
Collapse
|
7
|
Carabali M, Maxwell L, Levis B, Shreedhar P. Heterogeneity of Zika virus exposure and outcome ascertainment across cohorts of pregnant women, their infants and their children: a metadata survey. BMJ Open 2022; 12:e064362. [PMID: 36414312 PMCID: PMC9685007 DOI: 10.1136/bmjopen-2022-064362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To support the Zika virus (ZIKV) Individual Participant Data (IPD) Consortium's efforts to harmonise and analyse IPD from ZIKV-related prospective cohort studies and surveillance-based studies of pregnant women and their infants and children; we developed and disseminated a metadata survey among ZIKV-IPD Meta-Analysis (MA) study participants to identify and provide a comprehensive overview of study-level heterogeneity in exposure, outcome and covariate ascertainment and definitions. SETTING Cohort and surveillance studies that measured ZIKV infection during pregnancy or at birth and measured fetal, infant, or child outcomes were identified through a systematic search and consultations with ZIKV researchers and Ministries of Health from 20 countries or territories. PARTICIPANTS Fifty-four cohort or active surveillance studies shared deidentified data for the IPD-MA and completed the metadata survey, representing 33 061 women (11 020 with ZIKV) and 18 281 children. PRIMARY AND SECONDARY OUTCOME MEASURES Study-level heterogeneity in exposure, outcome and covariate ascertainment and definitions. RESULTS Median study sample size was 268 (IQR=100, 698). Inclusion criteria, follow-up procedures and exposure and outcome ascertainment were highly heterogenous, differing meaningfully across regions and multisite studies. Enrolment duration and follow-up for children after birth varied before and after the declaration of the Public Health Emergency of International Concern (PHEIC) and according to the type of funding received. CONCLUSION This work highlights the logistic and statistical challenges that must be addressed to account for the multiple sources of within-study and between-study heterogeneity when conducting IPD-MAs of data collected in the research response to emergent pathogens like ZIKV.
Collapse
Affiliation(s)
- Mabel Carabali
- Departement de Médecine Sociale et Préventive, Université de Montréal, Montreal, Quebec, Canada
- Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Maxwell
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneve, Switzerland
- Heidelberger Institut für Global Health, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Brooke Levis
- Centre for Prognosis Research, School of Medicine, Keele University, Keele, Staffordshire, UK
| | | |
Collapse
|
8
|
Sang R, Lutomiah J, Chepkorir E, Tchouassi DP. Evolving dynamics of Aedes-borne diseases in Africa: a cause for concern. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100958. [PMID: 35878761 DOI: 10.1016/j.cois.2022.100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Aedes-borne viruses, yellow fever (YF), dengue, Chikungunya and Zika are taking a huge toll on global health as Africa faces re-emergence with potential for massive human catastrophe. Transmission driven by diverse vectors in ecological settings that range from urban to rural and sylvatic habitats with human and nonhuman primate/reservoir activities across such habitats has facilitated virus movement and spillover to susceptible human populations. Approved vaccine exists for YF, although availability for routine and mass vaccination is often constrained. Integrating vector surveillance, understanding disease ecology with rationalised vaccination in high-risk areas (YF) remains important in disease prevention and control. We review trends in disease occurrence in Africa, hinting on gaps in disease detection and management and the prospects for prevention and/or control.
Collapse
Affiliation(s)
- Rosemary Sang
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| | - Joel Lutomiah
- Center for Virus Research, Kenya Medical Research Institute, Kenya
| | - Edith Chepkorir
- Center for Virus Research, Kenya Medical Research Institute, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Garcia-Blanco MA, Ooi EE, Sessions OM. RNA Viruses, Pandemics and Anticipatory Preparedness. Viruses 2022; 14:2176. [PMID: 36298729 PMCID: PMC9611157 DOI: 10.3390/v14102176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
RNA viruses are likely to cause future pandemics and therefore we must create and organize a deep knowledge of these viruses to prevent and manage this risk. Assuming prevention will fail, at least once, we must be prepared to manage a future pandemic using all resources available. We emphasize the importance of having safe vaccine candidates and safe broad-spectrum antivirals ready for rapid clinical translation. Additionally, we must have similar tools to be ready for outbreaks of RNA viruses among animals and plants. Finally, similar coordination should be accomplished for other pathogens with pandemic potential.
Collapse
Affiliation(s)
- Mariano A. Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
- Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Center, Singapore 169857, Singapore
| | - October M. Sessions
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore
| |
Collapse
|
10
|
Rabelo VWH, de Palmer Paixão ICN, Abreu PA. Structural insights into the inhibition of the nsP2 protease from Chikungunya virus by molecular modeling approaches. J Mol Model 2022; 28:311. [PMID: 36097090 DOI: 10.1007/s00894-022-05316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Chikungunya virus (CHIKV) is the etiological agent of the Chikungunya fever which has spread worldwide. Clinically, this disease may lead to prolonged incapacitating joint pain that can compromise remarkably the patients' quality of life. However, there are no licensed vaccines or specific drugs to fight this infection yet, making the search for novel therapies an imperative need. In this scenario, the CHIKV nsP2 protease emerged as an attractive therapeutic target once this protein plays a pivotal role in viral replication and pathogenesis. Hence, we investigated the structural basis for the inhibition of this enzyme by using molecular docking and dynamics simulations. Compounds with inhibitory activities against CHIKV nsP2 protease determined experimentally were selected from the literature. Docking studies with a set of stereoisomers showed that trans isomers, but not cis ones, bound close to the catalytic dyad which may explain isomerism requirements to the enzyme's inhibition. Further, binding mode analyses of other known inhibitors revealed highly conserved contacts between inhibitors and enzyme residues like N1011, C1013, A1046, Y1079, N1082, W1084, L1205, and M1242. Molecular dynamics simulations reinforced the importance of some of these interactions and pointed to nonpolar interactions as the main forces for inhibitors' binding. Finally, we observed that true inhibitors exhibited lower structural fluctuation, higher ligand efficiency and did not induce significant changes in protein correlated motions. Collectively, our findings might allow discerning true inhibitors from false ones and can guide drug development efforts targeting the nsP2 protease to fight CHIKV infections in the future.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil.,Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, 27965-045, Brazil.
| |
Collapse
|
11
|
Karbalaei M, Keikha M. Epidemiological trends of Aedes-borne diseases in European countries during 2015–2020. Ann Med Surg (Lond) 2022; 81:104416. [PMID: 36042929 PMCID: PMC9420472 DOI: 10.1016/j.amsu.2022.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/18/2023] Open
|
12
|
Bonds JAS, Collins CM, Gouagna L. Could species-focused suppression of Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the tiger mosquito, affect interacting predators? An evidence synthesis from the literature. PEST MANAGEMENT SCIENCE 2022; 78:2729-2745. [PMID: 35294802 PMCID: PMC9323472 DOI: 10.1002/ps.6870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The risks of Aedes aegypti and Aedes albopictus nuisance and vector-borne diseases are rising and the adverse effects of broad-spectrum insecticide application have promoted species-specific techniques, such as sterile insect technique (SIT) and other genetic strategies, as contenders in their control operations. When specific vector suppression is proposed, potential effects on predators and wider ecosystem are some of the first stakeholder questions. These are not the only Aedes vectors of human diseases, but are those for which SIT and genetic strategies are of most interest. They vary ecologically and in habitat origin, but both have behaviorally human-adapted forms with expanding ranges. The aquatic life stages are where predation is strongest due to greater resource predictability and limited escape opportunity. These vectors' anthropic forms usually use ephemeral water bodies and man-made containers as larval habitats; predators that occur in these are mobile, opportunistic and generalist. No literature indicates that any predator depends on larvae of either species. As adults, foraging theory predicts these mosquitoes are of low profitability to predators. Energy expended hunting and consuming will mostly outweigh their energetic benefit. Moreover, as adult biomass is mobile and largely disaggregated, any predator is likely to be a generalist and opportunist. This work, which summarizes much of the literature currently available on the predators of Ae. aegypti and Ae. albopictus, indicates it is highly unlikely that any predator species depends on them. Species-specific vector control to reduce nuisance and disease is thus likely to be of negligible or limited impact on nontarget predators. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Louis‐Clément Gouagna
- UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle)IRD‐CNRS‐Univ. MontpellierMontpellierFrance
| |
Collapse
|
13
|
Vector-Borne Viral Diseases as a Current Threat for Human and Animal Health—One Health Perspective. J Clin Med 2022; 11:jcm11113026. [PMID: 35683413 PMCID: PMC9181581 DOI: 10.3390/jcm11113026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, an increase in the emergence or re-emergence of arthropod-borne viruses has been observed in many regions. Viruses such as dengue, yellow fever, or zika are a threat for millions of people on different continents. On the other hand, some arboviruses are still described as endemic, however, they could become more important in the near future. Additionally, there is a group of arboviruses that, although important for animal breeding, are not a direct threat for human health. Those include, e.g., Schmallenberg, bluetongue, or African swine fever viruses. This review focuses on arboviruses and their major vectors: mosquitoes, ticks, biting midges, and sandflies. We discuss the current knowledge on arbovirus transmission, ecology, and methods of prevention. As arboviruses are a challenge to both human and animal health, successful prevention and control are therefore only possible through a One Health perspective.
Collapse
|
14
|
Tosin M, Dantas E, Cunha A, Morrison RE. ARBO: Arbovirus modeling and uncertainty quantification toolbox. SOFTWARE IMPACTS 2022; 12:100252. [PMID: 35187502 PMCID: PMC8848574 DOI: 10.1016/j.simpa.2022.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 10/30/2022]
|
15
|
Ruiz-Burga E, Bruijning-Verhagen P, Palmer P, Sandcroft A, Fernandes G, de Hoog M, Bryan L, Pierre R, Bailey H, Giaquinto C, Thorne C, Christie CDC. The ZIKApp for detection of potential arbovirus infections and pregnancy complications in pregnant women in Jamaica: a pilot study (Preprint). JMIR Form Res 2021; 6:e34423. [PMID: 35896029 PMCID: PMC9377438 DOI: 10.2196/34423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elisa Ruiz-Burga
- Population, Policy & Practice Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Patricia Bruijning-Verhagen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Paulette Palmer
- Department of Child and Adolescent Health, University of the West Indies, Kingston, Jamaica
| | - Annalisa Sandcroft
- Department of Child and Adolescent Health, University of the West Indies, Kingston, Jamaica
| | - Georgina Fernandes
- Population, Policy & Practice Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Marieke de Hoog
- University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lenroy Bryan
- Department of Obstetrics and Gynaecology, University of the West Indies, Kingston, Jamaica
| | - Russell Pierre
- Department of Child and Adolescent Health, University of the West Indies, Kingston, Jamaica
| | - Heather Bailey
- Institute for Global Health, University College London, London, United Kingdom
| | - Carlo Giaquinto
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova, Padova, Italy
| | - Claire Thorne
- Population, Policy & Practice Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Celia D C Christie
- Department of Child and Adolescent Health, University of the West Indies, Kingston, Jamaica
| |
Collapse
|
16
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
17
|
Nanoparticles as Vaccines to Prevent Arbovirus Infection: A Long Road Ahead. Pathogens 2021; 10:pathogens10010036. [PMID: 33466440 PMCID: PMC7824877 DOI: 10.3390/pathogens10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health problem worldwide. Vaccination is considered one of the most effective ways to control arbovirus diseases in the human population. Nanoparticles have been widely explored as new vaccine platforms. Although nanoparticles' potential to act as new vaccines against infectious diseases has been identified, nanotechnology's impact on developing new vaccines to prevent arboviruses is unclear. Thus, we used a comprehensive bibliographic survey to integrate data concerning the use of diverse nanoparticles as vaccines against medically important arboviruses. Our analysis showed that considerable research had been conducted to develop and evaluate nanovaccines against Chikungunya virus, Dengue virus, Zika virus, Japanese encephalitis virus, and West Nile virus. The main findings indicate that nanoparticles have great potential for use as a new vaccine system against arboviruses. Most of the studies showed an increase in neutralizing antibody production after mouse immunization. Nevertheless, even with significant advances in this field, further efforts are necessary to address the nanoparticles' potential to act as a vaccine against these arboviruses. To promote advances in the field, we proposed a roadmap to help researchers better characterize and evaluate nanovaccines against medically important arboviruses.
Collapse
|