1
|
Hu D, Li X, Duan X, Yang L, Luo B, Wang L, Hu Z, Zhou Y, Qian P. Recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG: a candidate for an oral subunit vaccine against F4+ ETEC infection. Appl Environ Microbiol 2024:e0181724. [PMID: 39601541 DOI: 10.1128/aem.01817-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Diarrheal diseases attributable to multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) are escalating in severity, posing significant risks to the health and safety of both humans and animals. This study used Saccharomyces cerevisiae EBY100 to display the FaeG subunit of F4 colonizing factor as an oral vaccine against F4+ ETEC infection. Mice were orally immunized twice with 108 CFU of EBY100/pYD1-FaeG, followed by a challenge with F4+ ETEC EC6 on day 7 post-immunization. The results showed that the recombinant strain EBY100/pYD1-FaeG orally enhanced the growth of the small intestine villi, significantly boosted the expression of tight junction proteins (ZO-1, Occludin, MUC2, and Claudin) (P < 0.05), and modulated the gut microbiota composition. Additionally, immunization with EBY100/pYD1-FaeG also upregulated the levels of IL-2, IL-4, and IFN-γ in the intestines of mice (P < 0.01), while serum IgG and fecal sIgA titer significantly increased (P < 0.05). These immune responses enhanced the capacity to fight against ETEC, leading to an increased survival rate of mice and relieved damage to tissues and organs of mice infection. In summary, the study suggested that the recombinant Saccharomyces cerevisiae EBY100/pYD1-FaeG could effectively stimulate the immune response and generate specific antibodies against F4+ ETEC, showing its potential to serve as a subunit oral vaccine candidate for preventing F4+ ETEC infection.IMPORTANCEThe multidrug-resistant F4+ enterotoxigenic Escherichia coli (ETEC) strains are the primary clinical pathogens responsible for post-weaning diarrhea in piglets, resulting in substantial economic losses in the pig farming industry. In the study, we developed an oral vaccine candidate, Saccharomyces cerevisiae EBY100/pYD1-FaeG, to prevent diarrhea caused by multidrug-resistant F4+ ETEC. Oral administration of EBY100/pYD1-FaeG significantly enhanced immune responses, improved intestinal health, and provided protection against F4+ ETEC infection in mice. This approach offers a potential application prospect for preventing F4+ ETEC infections that lead to post-weaning diarrhea in clinical settings and provides a promising solution for addressing the growing threat of antibiotic resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuyue Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baizhi Luo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zihui Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Wu Y, Li J, Liu L, Chu X, Zhong M, Li H, Zhao C, Fu H, Sun Y, Li Y. Hyaluronic acid nanoparticles for targeted oral delivery of doxorubicin: Lymphatic transport and CD44 engagement. Int J Biol Macromol 2024; 273:133063. [PMID: 38880443 DOI: 10.1016/j.ijbiomac.2024.133063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
The oral delivery of doxorubicin (DOX), an anti-cancer drug, encounters multiple hurdles such as limited gastrointestinal permeability, P-glycoprotein-mediated efflux, brief intestinal residence, and rapid degradation. This study introduced a novel approach utilizing hyaluronic acid (HA)-grafted fatty acid monoglycerides (HGD) to encapsulate DOX, forming HGD-DOX nanoparticles, aimed at enhancing its oral bioavailability. Drug encapsulated by HGD provided several advantages, including extended drug retention in the gastrointestinal tract, controlled release kinetics, and promotion of lymphatic absorption in the intestine. Additionally, HGD-DOX nanoparticles could specifically target CD44 receptors, potentially increasing therapeutic efficacy. The uptake mechanism of HGD-DOX nanoparticles primarily involved clathrin-mediated, caveolin-mediated and macropinocytosis endocytosis. Pharmacokinetic analysis further revealed that HGD significantly prolonged the in vivo residence time of DOX. In vivo imaging and pharmacodynamic studies indicated that HGD possessed tumor-targeting capabilities and exhibited a significant inhibitory effect on tumor growth, while maintaining an acceptable safety profile. Collectively, these findings position HGD-DOX nanoparticles as a promising strategy to boost the oral bioavailability of DOX, offering a potential avenue for improved cancer treatment.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liang Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhong Chu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Zhong
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Qin S, Wen Z, Huang H, Wu W. Use of novel taurine-chitosan mediated liposomes for enhancing the oral absorption of doxorubicin via the TAUT transporter. Carbohydr Polym 2024; 329:121780. [PMID: 38286550 DOI: 10.1016/j.carbpol.2024.121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Our research aimed to enhance the oral bioavailability of doxorubicin hydrochloride (DOX·HCl) while minimizing the potential for myocardial toxicity. To achieve this goal, we developed a new method that utilizes a coating material to encapsulate the drug in liposomes, which can specifically target intestinal taurine transporter proteins. This coating material, TAU-CS, was created by combining taurine with chitosan. We characterized TAU-CS using various methods, including 1H NMR, FT-IR, and scanning electron microscopy (SEM). The resulting liposomes exhibited a regular spherical morphology, with a particle size of 195.7 nm, an encapsulation efficiency of 91.23 %, and a zeta potential of +11.65 mV. Under simulated gastrointestinal conditions, TAU-CS/LIP@DOX·HCl exhibited good stability and slow release. Pharmacokinetic studies revealed that, compared with DOX·HCl, TAU-CS/LIP@DOX·HCl had a relative bioavailability of 342 %. Intracellular uptake, immunofluorescence imaging, and permeation assays confirmed that the taurine transporter protein mediates the intestinal uptake of these liposomes. Our study suggested that liposomes coated with TAU-CS could serve as an effective oral delivery system and that targeting the taurine transporter protein shows promise in enhancing drug absorption.
Collapse
Affiliation(s)
- Shuiling Qin
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Huajie Huang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
4
|
Kharaba Z, Alfoteih Y, Alzoubi KH, Al-Azzam S, Al-Azayzih A, Al-Obaidi HJ, Awad AB, Dallal Bashi YH, Ahmed R, Khalil AM, Al Ahmad R, Aldeyab MA, Jirjees F. Lessons Learned from the Pandemic in the UAE: Children COVID-19 Vaccine Hesitancy and Its Impact on the Choice of Distance versus Face-to-Face Learning Modalities: An In-Depth Analysis of a National Study. Vaccines (Basel) 2023; 11:1598. [PMID: 37897000 PMCID: PMC10611097 DOI: 10.3390/vaccines11101598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
This study addresses the crucial aspect of childhood COVID-19 vaccination and its impact on parental decisions concerning learning modalities during the pandemic. This study aimed to gauge parental hesitancy towards vaccinating their children and its influence on choosing between distance and face-to-face learning options. Following STROBE guidelines for cross-sectional studies, this study surveyed 1973 parents in the United Arab Emirates using Google Forms during the COVID-19 pandemic. The results revealed that while more than half of the parents (51.6%) were willing to vaccinate their children if the COVID-19 vaccine was accessible and affordable, a significant majority (91.2%) expressed concerns about the rapid vaccine development process, which was the primary reason for vaccine rejection. Interestingly, a sizable portion (55.3%) had experienced online learning in the previous academic term, and, of those, 59.6% believed it negatively influenced their children's academic performance. Consequently, 66.4% expressed intent to shift their children back to face-to-face learning once feasible. Significantly, parents with medical backgrounds were more inclined (91.6%) to opt for face-to-face schooling compared to those without such backgrounds. Logistic regression analysis indicated associations between sociodemographic characteristics, educational level and background, and the decision to return children to face-to-face learning. Interestingly, when it comes to vaccine hesitancy, a noteworthy connection exists between the parents' reluctance to vaccinate their children and their preference for distance learning. In fact, parents who responded negatively to vaccinating their children against COVID-19, if the vaccine was available, showed a clear preference for the distance learning modality (p-value < 0.0001). This study underscores the complex interplay of factors and community perspectives shaping parental acceptance of childhood COVID-19 vaccination. The development pace of vaccines significantly influences parents' attitudes and beliefs about vaccination programs. Parents' medical backgrounds exhibit a clear correlation with their perceptions of sending children back to school safely. This highlights the potential impact of parental medical knowledge on decision making, emphasizing the need to consider parents' professional backgrounds when devising education- and vaccination-related policies.
Collapse
Affiliation(s)
- Zelal Kharaba
- Department of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi 112612, United Arab Emirates
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yassen Alfoteih
- Department of Dental Surgery, City University Ajman, Ajman 18484, United Arab Emirates;
- Department of General Education, City University Ajman, Ajman 18484, United Arab Emirates
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.H.A.); (F.J.)
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.A.-A.); (A.A.-A.)
| | - Sayer Al-Azzam
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.A.-A.); (A.A.-A.)
| | - Ahmad Al-Azayzih
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (S.A.-A.); (A.A.-A.)
| | - Hala J. Al-Obaidi
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (H.J.A.-O.); (Y.H.D.B.)
| | - Ahmed Bahaaeldin Awad
- Department of Clinical Pharmacy, Burjeel Medical City Hospital, Abu-Dhabi 7400, United Arab Emirates;
| | - Yahya H. Dallal Bashi
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (H.J.A.-O.); (Y.H.D.B.)
| | - Rahaf Ahmed
- Abbott LaboratoriesAlphamed Company Limited, Abu Dhabi 4236, United Arab Emirates;
| | - Alaa M. Khalil
- Al Thiqa Pharmacy Group, Abu Dhabi 47612, United Arab Emirates;
| | - Raneem Al Ahmad
- Pharmacy Intern, Cleveland Clinic Abu Dhabi, Abu Dhabi 112412, United Arab Emirates;
| | - Mamoon A. Aldeyab
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Feras Jirjees
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.H.A.); (F.J.)
| |
Collapse
|
5
|
Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S. Self-assembled chitosan-insulin oral nanoparticles - A critical perspective review. Int J Biol Macromol 2023:125125. [PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
Collapse
Affiliation(s)
- Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Lip Yong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, University Technology MARA, Selangor, Shah Alam 40450, Malaysia
| | - Najihah Binti Mohd Hasim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
6
|
Austriaco N. Yeast oral vaccines against infectious diseases. Front Microbiol 2023; 14:1150412. [PMID: 37138614 PMCID: PMC10149678 DOI: 10.3389/fmicb.2023.1150412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Vaccines that are delivered orally have several advantages over their counterparts that are administered via injection. Despite the advantages of oral delivery, however, approved oral vaccines are currently limited either to diseases that affect the gastrointestinal tract or to pathogens that have a crucial life cycle stage in the gut. Moreover, all of the approved oral vaccines for these diseases involve live-attenuated or inactivated pathogens. This mini-review summarizes the potential and challenges of yeast oral vaccine delivery systems for animal and human infectious diseases. These delivery systems utilize whole yeast recombinant cells that are consumed orally to transport candidate antigens to the immune system of the gut. This review begins with a discussion of the challenges associated with oral administration of vaccines and the distinct benefits offered by whole yeast delivery systems over other delivery systems. It then surveys the emerging yeast oral vaccines that have been developed over the past decade to combat animal and human diseases. In recent years, several candidate vaccines have emerged that can elicit the necessary immune response to provide significant protection against challenge by pathogen. They serve as proof of principle to show that yeast oral vaccines hold much promise.
Collapse
|
7
|
Linolenic acid conjugated chitosan micelles for improving the oral absorption of doxorubicin via fatty acid transporter. Carbohydr Polym 2023; 300:120233. [DOI: 10.1016/j.carbpol.2022.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
|
8
|
Xia T, Yang H, Guo Y, Guo T, Xin L, Jiang Y, Cui W, Zhou H, Qiao X, Wang X, Li J, Shan Z, Tang L, Wang L, Li Y. Human dendritic cell targeting peptide can be targeted to porcine dendritic cells to improve antigen capture efficiency to stimulate stronger immune response. Front Immunol 2022; 13:950597. [PMID: 36059519 PMCID: PMC9437479 DOI: 10.3389/fimmu.2022.950597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) play a key role in the natural recognition of pathogens and subsequent activation of adaptive immune responses due to their potent antigen-presenting ability. Dendritic cell-targeting peptide (DCpep) is strongly targeted to DCs, which often express antigens, to enhance the efficacy of vaccines. Our previous study showed that recombinant Lactobacillus expressing human DCpep could significantly induce stronger immune responses than recombinant Lactobacillus without DCpep, but the mechanism remains unclear. In this study, the mechanism by which DCpep enhances the immune response against recombinant Lactobacillus was explored. Fluorescence-labeled human DCpep was synthesized to evaluate the binding ability of human DCpep to porcine monocyte-derived dendritic cells (Mo-DCs) and DCs of the small intestine. The effects of Mo-DC function induced by recombinant Lactobacillus expressing human DCpep fused with the porcine epidemic diarrhea virus (PEDV) core neutralizing epitope (COE) antigen were also investigated. The results showed that human DCpep bind to porcine DCs, but not to porcine small intestinal epithelial cells. Human DCpep can also improve the capture efficiency of recombinant Lactobacillus by Mo-DCs, promote the maturation of dendritic cells, secrete more cytokines, and enhance the ability of porcine DCs to activate T-cell proliferation. Taken together, these results promote advanced understanding of the mechanism by which DCpep enhances immune responses. We found that some DCpeps are conserved between humans and pigs, which provides a theoretical basis for the development of a DC-targeted vaccine.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huizhu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lingxiang Xin
- Division of Bacterial Biologics Testing (I) China Institute of Veterinary Drug Control (IVDC), Beijing, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| |
Collapse
|