1
|
Parkash V, Ashwin H, Dey S, Sadlova J, Vojtkova B, Van Bocxlaer K, Wiggins R, Thompson D, Dey NS, Jaffe CL, Schwartz E, Volf P, Lacey CJN, Layton AM, Kaye PM. Safety and reactogenicity of a controlled human infection model of sand fly-transmitted cutaneous leishmaniasis. Nat Med 2024; 30:3150-3162. [PMID: 39095597 PMCID: PMC11564116 DOI: 10.1038/s41591-024-03146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/20/2024] [Indexed: 08/04/2024]
Abstract
The leishmaniases are globally important parasitic diseases for which no human vaccines are currently available. To facilitate vaccine development, we conducted an open-label observational study to establish a controlled human infection model (CHIM) of sand fly-transmitted cutaneous leishmaniasis (CL) caused by Leishmania major. Between 24 January and 12 August 2022, we exposed 14 participants to L. major-infected Phlebotomus duboscqi. The primary objective was to demonstrate effectiveness of lesion development (take rate) and safety (absence of CL lesion at 12 months). Secondary and exploratory objectives included rate of lesion development, parasite load and analysis of local immune responses by immunohistology and spatial transcriptomics. Lesion development was terminated by therapeutic biopsy (between days 14 and 42 after bite) in ten participants with clinically compatible lesions, one of which was not confirmed by parasite detection. We estimated an overall take rate for CL development of 64% (9/14). Two of ten participants had one and one of ten participants had two lesion recurrences 4-8 months after biopsy that were treated successfully with cryotherapy. No severe or serious adverse events were recorded, but as expected, scarring due to a combination of CL and the biopsy procedure was evident. All participants were lesion free at >12-month follow-up. We provide the first comprehensive map of immune cell distribution and cytokine/chemokine expression in human CL lesions, revealing discrete immune niches. This CHIM offers opportunities for vaccine candidate selection based on human efficacy data and for a greater understanding of immune-mediated pathology. ClinicalTrials.gov identifier: NCT04512742 .
Collapse
Affiliation(s)
- Vivak Parkash
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katrien Van Bocxlaer
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
- Skin Research Centre, Hull York Medical School, York, UK
| | - Rebecca Wiggins
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - David Thompson
- York and Scarborough Teaching Hospitals NHS Foundation Trust, York, UK
| | - Nidhi Sharma Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Charles L Jaffe
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Eli Schwartz
- Center for Geographic Medicine and Tropical Diseases, Chaim Sheba Medical Center and the School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Charles J N Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Alison M Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.
- Skin Research Centre, Hull York Medical School, York, UK.
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.
- Skin Research Centre, Hull York Medical School, York, UK.
| |
Collapse
|
2
|
Muhi S, Marshall JL, O'Brien DP, Johnson PD, Ross G, Ramakrishnan A, Mackay LK, Doerflinger M, McCarthy JS, Jamrozik E, Osowicki J, Stinear TP. A human model of Buruli ulcer: Provisional protocol for a Mycobacterium ulcerans controlled human infection study. Wellcome Open Res 2024; 9:488. [PMID: 39386965 PMCID: PMC11462124 DOI: 10.12688/wellcomeopenres.22719.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/12/2024] Open
Abstract
Critical knowledge gaps have impeded progress towards reducing the global burden of disease due to Mycobacterium ulcerans, the cause of the neglected tropical disease Buruli ulcer (BU). Development of a controlled human infection model of BU has been proposed as an experimental platform to explore host-pathogen interactions and evaluate tools for prevention, diagnosis, and treatment. We have previously introduced the use case for a new human model and identified M. ulcerans JKD8049 as a suitable challenge strain. Here, we present a provisional protocol for an initial study, for transparent peer review during the earliest stages of protocol development. Following simultaneous scientific peer review and community/stakeholder consultation of this provisional protocol, we aim to present a refined protocol for institutional review board (IRB) evaluation.
Collapse
Affiliation(s)
- Stephen Muhi
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Victoria, 3000, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of General Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Julia L. Marshall
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel P. O'Brien
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Barwon Health, Geelong, Victoria, Australia
| | - Paul D.R. Johnson
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Victoria, 3000, Australia
- Austin Health, Heidelberg, Victoria, Australia
| | - Gayle Ross
- Department of Dermatology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anand Ramakrishnan
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Laura K. Mackay
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - James S. McCarthy
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Euzebiusz Jamrozik
- Department of General Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- WHO Collaborating Centre for Bioethics, Monash University, Clayton, Victoria, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
- Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Victoria, 3000, Australia
- WHO Collaborating Centre for Mycobacterium ulcerans, Doherty Institute, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Shahsavari S, Sharifi I, Salarkia E, Keyhani A, Sharifi F, Babaei Z. In silico and experimental potentials of 6-shogaol and meglumine antimoniate on Leishmania major: multiple synergistic combinations through modulation of biological properties. Immunol Res 2024:10.1007/s12026-024-09530-4. [PMID: 39155331 DOI: 10.1007/s12026-024-09530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Conventional therapeutic agents are no longer adequate against leishmaniasis. This complex condition continues to have a high mortality rate and public health impact. The present study aimed to explore an extensive array of experiments to monitor the biological activities of 6-shogaol, a major component of ginger, and meglumine antimoniate (MA or Glucantime®). The binding affinity of 6-shogaol and inducible nitric oxide synthase (iNOS), a major enzyme catalyzing nitric oxide (NO) from L-arginine was the source for the docking outline. The inhibitory effects of 6-shogaol, MA, and mixture were assessed using colorimetric and macrophage assays. Antioxidant activity was inferred by UV-visible spectrophotometry. Variably expressed genes were measured by quantifiable real-time polymerase chain reaction. Apoptotic and cell cycle profiles were analyzed by flow cytometry. Moreover, a DNA fragmentation assay was performed by electrophoresis and antioxidant metabolites include superoxide dismutase (SOD), catalase (CAT), and also nitric oxide (NO) by enzyme-linked immunosorbent assay. 6-shogaol and MA exhibited multiple synergistic mechanisms of action. These included a remarkable leishmanicidal effect, potent antioxidative activity, a high safety index, upregulation of M1 macrophages/Th1-associated cytokines (including, γ-interferon, interleukin-12p40, tumor necrotizing factor-alpha, and associated iNOS), significant cell division capture at the sub-G0/G1 phase, a high profile of apoptosis through DNA fragmentation of the nuclear components. In addition, the activity of NO was substantially elevated by treated intracellular amastigotes, while SOD and CAT activities were significantly diminished. This study is exclusive because no similar investigation has inclusively been conducted before. These comprehensive mechanistic actions form a logical foundation for additional advanced study.
Collapse
Affiliation(s)
- Saeid Shahsavari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Kaye PM, Matlashewski G, Mohan S, Le Rutte E, Mondal D, Khamesipour A, Malvolti S. Vaccine value profile for leishmaniasis. Vaccine 2023; 41 Suppl 2:S153-S175. [PMID: 37951693 DOI: 10.1016/j.vaccine.2023.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 11/14/2023]
Abstract
Leishmania infections are global, occurring in 98 countries and all World Health Organization (WHO) regions with 600 million to 1 billion people at risk of infection. Visceral leishmaniasis is associated with almost 20,000 reported deaths annually, with children under 5 years of age being at the greatest risk of mortality. Amongst WHO-recognised Neglected Tropical Diseases (NTDs), leishmaniasis is one of the most important in terms of mortality and morbidity. With an increasing global burden of disease and a growing threat from climate change, urbanisation and drug resistance, there remains an imperative to develop leishmaniasis vaccines. New tools to understand correlates of protection and to assess vaccine efficacy are being developed to ease the transition into larger scale efficacy trials or provide alternate routes to licensure. Early indications suggest a diverse portfolio of manufacturers exists in endemic countries with an appetite to develop leishmaniasis vaccines. This Vaccine Value Profile (VVP) provides a high-level, comprehensive assessment of the currently available data to inform the potential public health, economic, and societal value of leishmaniasis vaccines. The leishmaniasis VVP was developed by a working group of subject matter experts from academia, public health groups, policy organizations, and non-profit organizations. All contributors have extensive expertise on various elements of the leishmaniasis VVP and have collectively described the state of knowledge and identified the current gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| | - Sakshi Mohan
- Center for Health Economics (CHE), University of York, York, UK.
| | - Epke Le Rutte
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
6
|
Derakhshani A, Sharifi I, Salarkia E, Keyhani A, Agha Kuchak Afshari S, Iranmanesh B, Lashkarizadeh M, Nejad Biglari H, Lari Najafi M, Bamorovat M. Antileishmanial potentials of azacitidine and along with meglumine antimoniate on Leishmania major: In silico prediction and in vitro analysis. PLoS One 2023; 18:e0291321. [PMID: 37682979 PMCID: PMC10490874 DOI: 10.1371/journal.pone.0291321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to investigate the in vitro and in silico antileishmanial activity of azacitidine (AZA) on Leishmania major promastigotes and amastigotes. The in silico method was used to evaluate the possibility of the interaction of AZA into the binding pocket of inducible nitric oxide synthase (iNOS), a leading defensive oxidative metabolite. Following that, in vitro anti-promastigote, and anti-amastigote activity of AZA was determined using an MTT assay and a macrophage model, respectively. Cytotoxic effects of AZA and meglumine antimoniate (MA) were also assessed by MTT assay on murine macrophages. All experiments were performed in triplicate. The results showed that AZA interacted with Ser133, Gln134, and Lys13 amino acids of iNOS, and the molecular docking score was obtained at -241.053 kcal/mol. AZA in combination with MA significantly (P<0.001) inhibited the growth rate of nonclinical promastigote (IC50 247.6±7.3 μM) and 8.5-fold higher of clinical intramacrophage amastigote stage (29.8±5.3 μM), compared to the untreated group. A significant upsurge of Th1 subsets and transcription genes and a meaningful decline in Th2 cytokines subclasses at the equivalent concentrations of AZA and MA was observed (P<0.001). The apoptosis effect of AZA along with MA was significantly induced on L. major in a dose-dependent manner (P<0.001). The present study demonstrated that AZA possesses antileishmanial activity in in vitro and in silico models. However, AZA combined with MA was more effective than AZA alone in inhibiting the growth rate of promastigotes and amastigotes of L. major. This study indicates that AZA in combination with MA demonstrated a potent antileishmanial mechanism, promoting immune response and enhancing an immunomodulatory role toward the Th1 pathway. This experimental study is a basic study for applying more knowledge about the mechanisms of AZA along with MA in animal models in the future.
Collapse
Affiliation(s)
- Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Behzad Iranmanesh
- Department of Dermatology, Afzalipour Hospital, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Lashkarizadeh
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Nejad Biglari
- Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
de Almeida MC, Felix JDS, Lopes MFDS, de Athayde FRF, Troiano JA, Scaramele NF, Furlan ADO, Lopes FL. Co-expression analysis of lncRNA and mRNA suggests a role for ncRNA-mediated regulation of host-parasite interactions in primary skin lesions of patients with American tegumentary leishmaniasis. Acta Trop 2023:106966. [PMID: 37302689 DOI: 10.1016/j.actatropica.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Leishmaniasis, caused by different Leishmania species, manifests as cutaneous or visceral forms. In the American continent, the cutaneous form is called American tegumentary leishmaniasis (ATL) and is primarily caused by Leishmania (Viannia) braziliensis. Mucosal leishmaniasis (ML), the most severe form of ATL, arises in approximately 20% of patients from a primary cutaneous lesion. Evidence indicates changes in overall expression patterns of mRNAs and lncRNAs of the host in response to Leishmania infection, with the parasite capable of modulating host immune response, which may contribute to disease progression. We evaluated whether the co-expression of lncRNAs and their putative target mRNAs in primary cutaneous lesions of patients with ATL could be associated with the development of ML. Previously available public RNA-Seq data from primary skin lesions of patients infected with L. braziliensis was employed. We identified 579 mRNAs and 46 lncRNAs differentially expressed in the primary lesion that subsequently progressed to mucosal disease. Co-expression analysis revealed 1,324 significantly correlated lncRNA-mRNA pairs. Among these, we highlight the positive correlation and trans-action between lncRNA SNHG29 and mRNA S100A8, both upregulated in the ML group. S100A8 and its heterodimeric partner S100A9 form a pro-inflammatory complex expressed by immune cells and seems to participate in host innate immune response processes of infection. These findings expand the knowledge of the Leishmania-host interaction and indicate that the expression of lncRNAs in the primary cutaneous lesion could regulate mRNAs and play roles in disease progression.
Collapse
Affiliation(s)
- Mariana Cordeiro de Almeida
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Juliana de Souza Felix
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Maria Fernanda da Silva Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flávia Regina Florencio de Athayde
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jéssica Antonini Troiano
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Natália Francisco Scaramele
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Amanda de Oliveira Furlan
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flavia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
8
|
Centrin-deficient Leishmania mexicana confers protection against Old World visceral leishmaniasis. NPJ Vaccines 2022; 7:157. [DOI: 10.1038/s41541-022-00574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractLeishmaniasis is one of the top neglected tropical diseases with significant morbidity and mortality in low and middle-income countries (LMIC). However, this disease is also spreading in the developed world. Currently, there is a lack of effective strategies to control this disease. Vaccination can be an effective measure to control leishmaniasis and has the potential to achieve disease elimination. Recently, we have generated centrin gene-deleted new world L. mexicana (LmexCen−/−) parasites using CRISPR/Cas9 and showed that they protect mice against a homologous L. mexicana infection that causes cutaneous disease. In this study, we tested whether LmexCen−/− parasites can also protect against visceral leishmaniasis caused by L. donovani in a hamster model. We showed that immunization with LmexCen−/− parasites is safe and does not cause lesions. Furthermore, such immunization conferred protection against visceral leishmaniasis caused by a needle-initiated L. donovani challenge, as indicated by a significant reduction in the parasite burdens in the spleen and liver as well as reduced mortality. Similar control of parasite burden was also observed against a sand fly mediated L. donovani challenge. Importantly, immunization with LmexCen−/− down-regulated the disease promoting cytokines IL-10 and IL-4 and increased pro-inflammatory cytokine IFN-γ resulting in higher IFN-γ/IL-10 and IFN-γ/IL4 ratios compared to non-immunized animals. LmexCen−/− immunization also resulted in long-lasting protection against L. donovani infection. Taken together, our study demonstrates that immunization with LmexCen−/− parasites is safe and efficacious against the Old World visceral leishmaniasis.
Collapse
|
9
|
Duthie MS, Machado BAS, Badaró R, Kaye PM, Reed SG. Leishmaniasis Vaccines: Applications of RNA Technology and Targeted Clinical Trial Designs. Pathogens 2022; 11:pathogens11111259. [PMID: 36365010 PMCID: PMC9695603 DOI: 10.3390/pathogens11111259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Leishmania parasites cause a variety of discrete clinical diseases that present in regions where their specific sand fly vectors sustain transmission. Clinical and laboratory research indicate the potential of immunization to prevent leishmaniasis and a wide array of vaccine candidates have been proposed. Unfortunately, multiple factors have precluded advancement of more than a few Leishmania targeting vaccines to clinical trial. The recent maturation of RNA vaccines into licensed products in the context of COVID-19 indicates the likelihood of broader use of the technology. Herein, we discuss the potential benefits provided by RNA technology as an approach to address the bottlenecks encountered for Leishmania vaccines. Further, we outline a variety of strategies that could be used to more efficiently evaluate Leishmania vaccine efficacy, including controlled human infection models and initial use in a therapeutic setting, that could prioritize candidates before evaluation in larger, longer and more complicated field trials.
Collapse
Affiliation(s)
| | - Bruna A S Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Steven G Reed
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA
| |
Collapse
|
10
|
Ntoumi F, Kremsner PG. Vaccination with fractional doses: promise or illusion? THE LANCET. INFECTIOUS DISEASES 2022; 22:1258-1259. [PMID: 35753319 DOI: 10.1016/s1473-3099(22)00310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Congolese Foundation for Medical Research, Brazzaville, Republic of Congo.
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
11
|
Machado AS, Lage DP, Vale DL, Freitas CS, Linhares FP, Cardoso JM, Pereira IA, Ramos FF, Tavares GS, Ludolf F, Oliveira-da-Silva JA, Bandeira RS, Simões AC, Duarte MC, Oliveira JS, Christodoulides M, Chávez-Fumagalli MA, Roatt BM, Martins VT, Coelho EA. A recombinant Leishmania amastigote-specific protein, rLiHyG, with adjuvants, protects against infection with Leishmania infantum. Acta Trop 2022; 230:106412. [PMID: 35305943 DOI: 10.1016/j.actatropica.2022.106412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
Vaccination against visceral leishmaniasis (VL) should be considered as a control measure to protect against disease, and amastigote-specific proteins could help to develop such vaccines, since this parasite form is in contact with the host immune system during the active disease. In this study, a Leishmania amastigote-specific protein, LiHyG, was evaluated as recombinant protein (rLiHyG) as vaccine candidate against Leishmania infantum infection in BALB/c mice. The protein was associated with saponin (rLiHyG/Sap) or Poloxamer 407-based polymeric micelles (rLiHyG/Mic) as adjuvants, and animals receiving saline, saponin or micelle as controls. Immunological and parasitological analyses were performed before (n = 8 per group; as primary endpoint) and after (n = 8 per group; as secondary endpoint) infection. Results showed that, in both endpoints, rLiHyG/Sap and rLiHyG/Mic induced higher levels of IFN-γ, IL-12 and GM-CSF in spleen cell cultures from vaccinated animals, besides elevated presence of IgG2a isotype antibodies. Decreased hepatotoxicity and 'positive lymphoproliferative response were also found after challenge. Such findings reflected in significantly lower levels of parasite load found in their spleens, livers, bone marrows and draining lymph nodes. In conclusion, rLiHyG associated with Th1-type adjuvant could be considered for future studies as vaccine candidate to protect against VL.
Collapse
|
12
|
Kaye PM, Mohan S, Mantel C, Malhame M, Revill P, Le Rutte E, Parkash V, Layton AM, Lacey CJ, Malvolti S. Overcoming roadblocks in the development of vaccines for leishmaniasis. Expert Rev Vaccines 2021; 20:1419-1430. [PMID: 34727814 PMCID: PMC9844205 DOI: 10.1080/14760584.2021.1990043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The leishmaniases represent a group of parasitic diseases caused by infection with one of several species of Leishmania parasites. Disease presentation varies because of differences in parasite and host genetics and may be influenced by additional factors such as host nutritional status or co-infection. Studies in experimental models of Leishmania infection, vaccination of companion animals and human epidemiological data suggest that many forms of leishmaniasis could be prevented by vaccination, but no vaccines are currently available for human use. AREAS COVERED We describe some of the existing roadblocks to the development and implementation of an effective leishmaniasis vaccine, based on a review of recent literature found on PubMed, BioRxiv and MedRxiv. In addition to discussing scientific unknowns that hinder vaccine candidate identification and selection, we explore gaps in knowledge regarding the commercial and public health value propositions underpinning vaccine development and provide a route map for future research and advocacy. EXPERT OPINION Despite significant progress, leishmaniasis vaccine development remains hindered by significant gaps in understanding that span the vaccine development pipeline. Increased coordination and adoption of a more holistic view to vaccine development will be required to ensure more rapid progress in the years ahead.
Collapse
Affiliation(s)
- Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, UK
| | - Sakshi Mohan
- Centre for Health Economics, University of York, Heslington, York, UK
| | | | | | - Paul Revill
- Centre for Health Economics, University of York, Heslington, York, UK
| | - Epke Le Rutte
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vivak Parkash
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, UK
| | - Alison M. Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, UK
| | - Charles J.N. Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, UK
| | | |
Collapse
|