1
|
Li T, Zhang C, Wang X, Zhang X, Wu Z, Liang Y. The Impact of Stroboscopic Visual Conditions on the Performance of Elite Curling Athletes. Life (Basel) 2024; 14:1184. [PMID: 39337968 PMCID: PMC11432937 DOI: 10.3390/life14091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND In elite curling, precise time perception, speed control, and accuracy are critical components of performance. Stroboscopic training enhances visual processing speed, reaction time, motor skill control, and cognitive abilities by challenging the brain to make quick decisions with limited visual information. PURPOSE This study aimed to investigate the impact of stroboscopic visual conditions on the key performance aspects of elite athletes in curling to determine whether these effects can be leveraged in long-term training to enhance elite curling performance. METHODS This study involved the participation of 32 national-level male curling athletes (n = 32, age: 19.9 ± 2.2 years, height: 178.0 ± 6.2 cm, body mass: 71.9 ± 10.6 kg, and training age: 2.7 ± 0.9 years). A cross-over controlled experiment was conducted, with participants randomly assigned to either a stroboscopic-first group (n = 16) or a control-first group (n = 16). Each participant completed tests under both stroboscopic and normal visual conditions, including assessments of time perception error, speed control error, and curling accuracy. Paired sample t-tests were employed to analyse performance differences across conditions, and two-factor ANOVA was used to analyse sequence effects. Bonferroni post-hoc tests were used to compare differences if the main effect was significant. Cohen's d was used for two-group comparisons, whereas ηp2 and Cohen's f were used for comparisons involving three or more groups. RESULTS under stroboscopic conditions, participants experienced increased errors in time perception (p < 0.001, Cohen's d = 1.143), delivery speed control (p = 0.016, Cohen's d = 0.448), and reduced accuracy (p = 0.029, Cohen's d = 0.404). The sequence main effect on speed control error was significant (p = 0.025, ηp2 = 0.081, Cohen's f = 0.297). CONCLUSIONS Stroboscopic visual conditions negatively impacted cognition (especially time perception) and delivery performance focused on speed control and accuracy in elite curling, highlighting the potential and feasibility of using stroboscopic training to enhance elite curling performance.
Collapse
Affiliation(s)
- Tianhe Li
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Chiyue Zhang
- China Ice Sport College, Beijing Sport University, Beijing 100084, China
| | - Xiaoyao Wang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Xinai Zhang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Zhiqiang Wu
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Yapu Liang
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
2
|
Ünver E, Konşuk Ünlü H, Yıldız AE, Cinemre ŞA. A new approach for classification of stretch-shortening cycle: Beyond 250 ms of ground contact time. J Sports Sci 2024; 42:1617-1626. [PMID: 39317922 DOI: 10.1080/02640414.2024.2403873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The stretch-shortening cycle (SSC) has been classified into fast (<250 ms) and slow (>250 ms) groups based on ground contact time (GCT) threshold values. However, there are gaps in the literature on how the 250 ms threshold value was found and which variables affect it. The purpose of this study is to validate the 250 ms threshold by investigating the factors affecting this threshold. For this purpose, force-time variables during a drop jump (DJ) with a force plate and achilles tendon (AT) muscle-tendon unit mechanical properties using shear-wave elastography in 46 recreationally active men were analysed. A regression tree analysis was conducted using R studio to classify GCT with correlated variables (p < 0.05). The new GCT threshold values (GCT < 188 ms, 188 ≤ GCT < 222 ms and GCT ≥ 222 ms) were found according to the lowest root mean square error of approximation value (0.1985) at reactive strength index. Comparisons of GCT groups showed significant differences in force, time, power variables and AT length (p < 0.05). AT length is the main variable differentiating GCT groups: Short AT results in a short GCT and long AT results in a long GCT. This study reveals that SSC can be classified into three groups using new GCT threshold values, offering a new perspective for SSC assessment.
Collapse
Affiliation(s)
- Evrim Ünver
- Faculty of Sport Sciences, Department of Exercise and Sport Sciences, Hacettepe University, Ankara, Türkiye
| | - Hande Konşuk Ünlü
- Department of Health Research, Hacettepe University Institute of Public Health, Ankara, Turkey
| | - Adalet E Yıldız
- Faculty of Medicine Department of Radiology, Hacettepe University, Ankara, Turkey
| | - Şükrü Alpan Cinemre
- Faculty of Sport Sciences, Department of Exercise and Sport Sciences, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Harrison KD, Dakin CJ, Beethe AZ, Louder T. Effects of Stroboscopic Vision on Depth Jump Motor Control: A Biomechanical Analysis. Bioengineering (Basel) 2024; 11:290. [PMID: 38534564 DOI: 10.3390/bioengineering11030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Researchers commonly use the 'free-fall' paradigm to investigate motor control during landing impacts, particularly in drop landings and depth jumps (DJ). While recent studies have focused on the impact of vision on landing motor control, previous research fully removed continuous visual input, limiting ecological validity. The aim of this investigation was to evaluate the effects of stroboscopic vision on depth jump (DJ) motor control. Ground reaction forces (GRF) and lower-extremity surface electromyography (EMG) were collected for 20 young adults (11 male; 9 female) performing six depth jumps (0.51 m drop height) in each of two visual conditions (full vision vs. 3 Hz stroboscopic vision). Muscle activation magnitude was estimated from EMG signals using root-mean-square amplitudes (RMS) over specific time intervals (150 ms pre-impact; 30-60 ms, 60-85 ms, and 85-120 ms post-impact). The main effects of and interactions between vision and trial number were assessed using two-way within-subjects repeated measures analyses of variance. Peak GRF was 6.4% greater, on average, for DJs performed with stroboscopic vision compared to full vision (p = 0.042). Tibialis anterior RMS EMG during the 60-85 ms post-impact time interval was 14.1% lower for DJs performed with stroboscopic vision (p = 0.020). Vastus lateralis RMS EMG during the 85-120 ms post-impact time interval was 11.8% lower for DJs performed with stroboscopic vision (p = 0.017). Stroboscopic vision altered DJ landing mechanics and lower-extremity muscle activation. The observed increase in peak GRF and reduction in RMS EMG of the tibialis anterior and vastus lateralis post-landing may signify a higher magnitude of lower-extremity musculotendinous stiffness developed pre-landing. The results indicate measurable sensorimotor disruption for DJs performed with stroboscopic vision, warranting further research and supporting the potential use of stroboscopic vision as a sensorimotor training aid in exercise and rehabilitation. Stroboscopic vision could induce beneficial adaptations in multisensory integration, applicable to restoring sensorimotor function after injury and preventing injuries in populations experiencing landing impacts at night (e.g., military personnel).
Collapse
Affiliation(s)
- Kenneth D Harrison
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA
| | - Christopher J Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA
| | - Anne Z Beethe
- PEAK Performance, Colby College Athletics, Waterville, ME 04901, USA
| | - Talin Louder
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
4
|
Zwierko T, Jedziniak W, Domaradzki J, Zwierko M, Opolska M, Lubiński W. Electrophysiological Evidence of Stroboscopic Training in Elite Handball Players: Visual Evoked Potentials Study. J Hum Kinet 2024; 90:57-69. [PMID: 38380298 PMCID: PMC10875695 DOI: 10.5114/jhk/169443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 02/22/2024] Open
Abstract
Stroboscopic training enhances perceptual cognition and motor skills; however, neurophysiological mechanisms underlying this adaptation are not fully understood. This study aimed to investigate the effects of a six-week stroboscopic training program on the conductivity of the visual pathway in elite handball players, specifically related to their visual processing of retinal location and viewing conditions. The study included 22 handball players who were randomly assigned to an experimental or a control group. Both groups performed handball-specific in-situ tasks, but only the experimental group underwent stroboscopic training. Participants were assessed three times using visually evoked potential recordings measured by P100 implicit time and amplitude under three viewing conditions (dominant eye, non-dominant eye, and binocular) and two retinal locations (extra-foveal and foveal vision) before and after the six-week training period, and again four weeks later. The results showed a significant TIME vs. GROUP effect of P100 implicit time for the dominant eye in extra-foveal vision (F2,40 = 5.20, p = 0.010, ηp2 = 0.206), extra-foveal binocular viewing (F2,40 = 3.32, p = 0.046, ηp2 = 0.142), and dominant eye foveal vision (F2,40 = 4.07, p = 0.025, ηp2 = 0.169). Stroboscopic training significantly improved early visual processing by reducing the P100 implicit time for the dominant eye and binocular vision, particularly in extra-foveal vision. The improvements were more noticeable in the short compared to the long term.
Collapse
Affiliation(s)
- Teresa Zwierko
- Institute of Physical Culture Sciences, Laboratory of Kinesiology, Functional and Structural Human Research Center, University of Szczecin, Szczecin, Poland
| | - Wojciech Jedziniak
- Institute of Physical Culture Sciences, Laboratory of Kinesiology, Functional and Structural Human Research Center, University of Szczecin, Szczecin, Poland
| | - Jarosław Domaradzki
- Unit of Biostructure, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Michał Zwierko
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Marlena Opolska
- Institute of Biology, University of Szczecin, Szczecin, Poland
| | - Wojciech Lubiński
- II Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Das J, Walker R, Barry G, Vitório R, Stuart S, Morris R. Stroboscopic visual training: The potential for clinical application in neurological populations. PLOS DIGITAL HEALTH 2023; 2:e0000335. [PMID: 37611053 PMCID: PMC10446176 DOI: 10.1371/journal.pdig.0000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Visual problems are common in people who have neurological injury or disease, with deficits linked to postural control and gait impairment. Vision therapy could be a useful intervention for visual impairment in various neurological conditions such as stroke, head injury, or Parkinson's disease. Stroboscopic visual training (SVT) has been shown to improve aspects of visuomotor and cognitive performance in healthy populations, but approaches vary with respect to testing protocols, populations, and outcomes. The purpose of this structured review was to examine the use of strobe glasses as a training intervention to inform the development of robust protocols for use in clinical practice. Within this review, any studies using strobe glasses as a training intervention with visual or motor performance-related outcomes was considered. PubMed, Scopus, and ProQuest databases were searched in January 2023. Two independent reviewers (JD and RM) screened articles that used strobe glasses as a training tool. A total of 33 full text articles were screened, and 15 met inclusion/exclusion criteria. Reported outcomes of SVT included improvements in short-term memory, attention, and visual response times, with emerging evidence for training effects translating to balance and physical performance. However, the lack of standardisation across studies for SVT protocols, variation in intervention settings, duration and outcomes, and the limited evidence within clinical populations demonstrates that further work is required to determine optimal strobe dosage and delivery. This review highlights the potential benefits, and existing research gaps regarding the use of SVT in clinical practice, with recommendations for clinicians considering adopting this technology as part of future studies in this emerging field.
Collapse
Affiliation(s)
- Julia Das
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
| | - Richard Walker
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
| | - Gill Barry
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Rodrigo Vitório
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Samuel Stuart
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
| | - Rosie Morris
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, United Kingdom
| |
Collapse
|
6
|
Zwierko M, Jedziniak W, Popowczak M, Rokita A. Effects of in-situ stroboscopic training on visual, visuomotor and reactive agility in youth volleyball players. PeerJ 2023; 11:e15213. [PMID: 37250711 PMCID: PMC10211363 DOI: 10.7717/peerj.15213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 05/31/2023] Open
Abstract
Background Stroboscopic training is based on an exercise with intermittent visual stimuli that force a greater demand on the visuomotor processing for improving performance under normal vision. While the stroboscopic effect is used as an effective tool to improve information processing in general perceptual-cognitive tasks, there is still a lack of research focused on identifying training protocols for sport-specific settings. Therefore, we aimed at assessing the effects of in-situ stroboscopic training on visual, visuomotor and reactive agility in young volleyball players. Methods Fifty young volleyball athletes (26 males and 24 females; mean age, 16.5 ± 0.6 years) participated in this study and were each divided randomly into an experimental group and a control group, who then both performed identical volleyball-specific tasks, with the experimental group under stroboscopic influence. The participants were evaluated three times using laboratory based tests for simple and complex reaction speed, sensory sensitivity and saccade dynamics; before the after the 6-week-long training (short-term effect) and 4 weeks later (long-term effect). In addition, a field test investigated the effects of the training on reactive agility. Results A significant TIME vs GROUP effect was observed for (1) simple motor time (p = 0.020, ηp2 = 0.08), with improvement in the stroboscopic group in the post-test and retention test (p = 0.003, d = 0.42 and p = 0.027, d = 0.35, respectively); (2) complex reaction speed (p < 0.001, ηp2 = 0.22), with a large post-test effect in the stroboscopic group (p < 0.001, d = 0.87) and a small effect in the non-stroboscopic group (p = 0.010, d = 0.31); (3) saccade dynamics (p = 0.011, ηp2 = 0.09), with post-hoc tests in the stroboscopic group not reaching significance (p = 0.083, d = 0.54); and (4) reactive agility (p = 0.039, ηp2 = 0.07), with a post-test improvement in the stroboscopic group (p = 0.017, d = 0.49). Neither sensory sensitivity nor simple reaction time was statistically significantly affected as a result of the training (p > 0.05). A significant TIME vs GENDER effect was observed for saccadic dynamics (p = 0.003, ηp2 = 0.226) and reactive agility (p = 0.004, ηp2 = 0.213), with stronger performance gains in the females. Conclusions There was a larger effectiveness from the 6-week volleyball-specific training in the stroboscopic group compared to the non-stroboscopic group. The stroboscopic training resulted in significant improvements on most measures (three of five) of visual and visuomotor function with more marked enhancement in visuomotor than in sensory processing. Also, the stroboscopic intervention improved reactive agility, with more pronounced performance gains for short-term compared to the long-term changes. Gender differences in response to the stroboscopic training are inconclusive, therefore our findings do not offer a clear consensus.
Collapse
Affiliation(s)
- Michał Zwierko
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Wojciech Jedziniak
- Institute of Physical Culture Sciences, University of Szczecin, Szczecin, Poland
| | - Marek Popowczak
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Andrzej Rokita
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| |
Collapse
|
7
|
Tsai YY, Chen YC, Zhao CG, Hwang IS. Adaptations of postural sway dynamics and cortical response to unstable stance with stroboscopic vision in older adults. Front Physiol 2022; 13:919184. [PMID: 36105297 PMCID: PMC9465385 DOI: 10.3389/fphys.2022.919184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Stroboscopic vision (SV), intermittent visual blocking, has recently been incorporated into postural training in rehabilitation. This study investigated interactions of postural fluctuation dynamics and cortical processing for the elderly during stabilometer stance with SV. Methods: Thirty-five healthy elderly maintained an upright stance on a stabilometer. Along with postural fluctuation dynamics, EEG relative power and EEG-EEG connectivity were used to contrast neuromechanical controls of stabilometer stance with SV and full-vision. Results: Compared with the full-vision, SV led to greater postural fluctuations with lower sample entropy and mean frequency (MF). SV also reduced regional power in the mid-frontal theta cluster, which was correlated to SV-dependent changes in the size of postural fluctuations. SV also enhanced the alpha band supra-threshold connectivity in the visual dorsal and frontal–occipital loops of the right hemisphere, and the supra-threshold connectivity from Fp2 positively related to variations in the MF of postural fluctuations. Conclusion: SV adds challenge to postural regulation on the stabilometer, with the increasing regularity of postural movements and fewer corrective attempts to achieve the postural goal. The elderly shift over-reliance on visual inputs for posture control with more non-visual awareness, considering deactivation of the dorsal visual stream and visual error processing.
Collapse
Affiliation(s)
- Yi-Ying Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Chen-Guang Zhao
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- *Correspondence: Ing-Shiou Hwang,
| |
Collapse
|