1
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Dai C, Lin Y. Comprehensive analysis of the diagnostic and therapeutic value of the hypoxia-related gene PLAUR in the progression of atherosclerosis. Sci Rep 2023; 13:8533. [PMID: 37237021 DOI: 10.1038/s41598-023-35548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis (AS) is a major contributor to a variety of negative clinical outcomes, including stroke and myocardial infarction. However, the role and therapeutic value of hypoxia-related genes in AS development has been less discussed. In this study, Plasminogen activator, urokinase receptor (PLAUR) was identified as an effective diagnostic marker for AS lesion progression by combining WGCNA and random forest algorithm. We validated the stability of the diagnostic value on multiple external datasets including humans and mice. We identified a significant correlation between PLAUR expression and lesion progression. We mined multiple single cell-RNA sequencing (sc-RNA seq) data to nominate macrophage as the key cell cluster for PLAUR mediated lesion progression. We combined cross-validation results from multiple databases to predict that HCG17-hsa-miR-424-5p-HIF1A, a competitive endogenous RNA (ceRNA) network, may regulate hypoxia inducible factor 1 subunit alpha (HIF1A) expression. The DrugMatrix database was used to predict alprazolam, valsartan, biotin A, lignocaine, and curcumin as potential drugs to delay lesion progression by antagonizing PLAUR, and AutoDock was used to verify the binding ability of drugs and PLAUR. Overall, this study provides the first systematic identification of the diagnostic and therapeutic value of PLAUR in AS and offers multiple treatment options with potential applications.
Collapse
Affiliation(s)
- Chengyi Dai
- The First People's Hospital of Xiaoshan District, Xiaoshan First Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China.
| | - Yuhang Lin
- Department of Neurology, Wenling First People's Hospital, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, Zhejiang, China
| |
Collapse
|
3
|
Afonso MS, Sharma M, Schlegel M, van Solingen C, Koelwyn GJ, Shanley LC, Beckett L, Peled D, Rahman K, Giannarelli C, Li H, Brown EJ, Khodadadi-Jamayran A, Fisher EA, Moore KJ. miR-33 Silencing Reprograms the Immune Cell Landscape in Atherosclerotic Plaques. Circ Res 2021; 128:1122-1138. [PMID: 33593073 PMCID: PMC8049965 DOI: 10.1161/circresaha.120.317914] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Milessa Silva Afonso
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Monika Sharma
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Martin Schlegel
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
- Department of Anesthesiology and Intensive Care, Technical University of Munich School of Medicine, Germany (M. Schlegel)
| | - Coen van Solingen
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Graeme J Koelwyn
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Lianne C Shanley
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Lauren Beckett
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
| | - Daniel Peled
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Karishma Rahman
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Chiara Giannarelli
- Cardiovascular Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (C.G.)
| | - Huilin Li
- Division of Biostatics, Department of Population Health (H.L), New York University School of Medicine
| | - Emily J Brown
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | | | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| | - Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.)
- NYU Cardiovascular Research Center (M.S.A., M. Sharma, M. Schlegel, C.v.S., G.J.K., L.C.S., L.B., D.P., K.R., E.J.B., E.A.F., K.J.M.), New York University School of Medicine
| |
Collapse
|
4
|
Sharma M, Schlegel MP, Afonso MS, Brown EJ, Rahman K, Weinstock A, Sansbury BE, Corr EM, van Solingen C, Koelwyn GJ, Shanley LC, Beckett L, Peled D, Lafaille JJ, Spite M, Loke P, Fisher EA, Moore KJ. Regulatory T Cells License Macrophage Pro-Resolving Functions During Atherosclerosis Regression. Circ Res 2020; 127:335-353. [PMID: 32336197 DOI: 10.1161/circresaha.119.316461] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Regression of atherosclerosis is an important clinical goal; however, the pathways that mediate the resolution of atherosclerotic inflammation and reversal of plaques are poorly understood. Regulatory T cells (Tregs) have been shown to be atheroprotective, yet the numbers of these immunosuppressive cells decrease with disease progression, and whether they contribute to atherosclerosis regression is not known. OBJECTIVE We investigated the roles of Tregs in the resolution of atherosclerotic inflammation, tissue remodeling, and plaque contraction during atherosclerosis regression. METHODS AND RESULTS Using multiple independent mouse models of atherosclerosis regression, we demonstrate that an increase in plaque Tregs is a common signature of regressing plaques. Single-cell RNA-sequencing of plaque immune cells revealed that unlike Tregs from progressing plaques that expressed markers of natural Tregs derived from the thymus, Tregs in regressing plaques lacked Nrp1 expression, suggesting that they are induced in the periphery during lipid-lowering therapy. To test whether Tregs are required for resolution of atherosclerotic inflammation and plaque regression, Tregs were depleted using CD25 monoclonal antibody in atherosclerotic mice during apolipoprotein B antisense oligonucleotide-mediated lipid lowering. Morphometric analyses revealed that Treg depletion blocked plaque remodeling and contraction, and impaired hallmarks of inflammation resolution, including dampening of the T helper 1 response, alternative activation of macrophages, efferocytosis, and upregulation of specialized proresolving lipid mediators. CONCLUSIONS Our data establish essential roles for Tregs in resolving atherosclerotic cardiovascular disease and provide mechanistic insight into the pathways governing plaque remodeling and regression of disease.
Collapse
Affiliation(s)
- Monika Sharma
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Martin P Schlegel
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine.,Department of Anesthesiology and Intensive Care, Technical University of Munich School of Medicine, Munich, Germany (M.P.S.)
| | - Milessa S Afonso
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Emily J Brown
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Karishma Rahman
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Ada Weinstock
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Brian E Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (B.E.S., M. Spite)
| | - Emma M Corr
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Coen van Solingen
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Graeme J Koelwyn
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Lianne C Shanley
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Lauren Beckett
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Daniel Peled
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Juan J Lafaille
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute (J.J.L.), New York University School of Medicine
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (B.E.S., M. Spite)
| | - P'ng Loke
- Department of Microbiology (Parasitology) (P.L.), New York University School of Medicine
| | - Edward A Fisher
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine.,Department of Cell Biology (E.A.F., K.J.M.), New York University Grossman School of Medicine
| | - Kathryn J Moore
- From the Leon H. Charney Division of Cardiology, Department of Medicine (M. Sharma, M.P.S., M.S.A., E.J.B., K.R., A.W., E.M.C., C.v.S., G.J.K., L.C.S., L.B., D.P., E.A.F., K.J.M.), New York University Grossman School of Medicine.,Department of Cell Biology (E.A.F., K.J.M.), New York University Grossman School of Medicine
| |
Collapse
|
5
|
Electron paramagnetic resonance oximetry as a novel approach to monitor the effectiveness and quality of red blood cell transfusions. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:296-306. [PMID: 31184583 DOI: 10.2450/2019.0037-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The goal of red blood cell transfusion is to improve tissue oxygenation. Assessment of red blood cell quality and individualised therapeutic needs can be optimised using direct oxygen (O2) measurements to guide treatment. Electron paramagnetic resonance oximetry is capable of accurate, repeatable and minimally invasive measurements of tissue pO2. Here we present preclinical proof-of-concept of the utility of electron paramagnetic resonance oximetry in an experimental setting of acute blood loss, transfusion, and post-transfusion monitoring. MATERIALS AND METHODS Donor rat blood was collected, leucocyte-reduced, and stored at 4 °C in AS-3 for 1, 7 and 14 days. Red blood cell morphology, O2 equilibrium, p50 and Hill numbers from O2 binding and dissociation curves were evaluated in vitro. Recipient rats were bled and maintained at a mean arterial pressure of 30-40 mmHg and hind limb muscle (biceps femoris) pO2 at 25-50% of baseline. Muscle pO2 was monitored continuously over the course of experiments to assess the effectiveness of red blood cell preparations at different stages of blood loss and restoration. RESULTS Red blood cell morphology, O2 equilibrium and p50 values of intra-erythrocyte haemoglobin were significantly altered by refrigerated storage for both 7 and 14 days. Transfusion of red blood cells stored for 7 or 14 days demonstrated an equivalently impaired ability to restore hind limb muscle pO2, consistent with in vitro observations and transfusion with albumin. Red blood cells refrigerated for 1 day demonstrated normal morphology, in vitro oxygenation and in vivo restoration of tissue pO2. DISCUSSION Electron paramagnetic resonance oximetry represents a useful approach to assessing the quality of red blood cells and subsequent transfusion effectiveness.
Collapse
|
6
|
Old and New NICE Guidelines for the Evaluation of New Onset Stable Chest Pain: A Real World Perspective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3762305. [PMID: 30533431 PMCID: PMC6250018 DOI: 10.1155/2018/3762305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/01/2018] [Accepted: 10/10/2018] [Indexed: 01/11/2023]
Abstract
Stable chest pain is a common clinical presentation that often requires further investigation using noninvasive or invasive testing, resulting in a resource-consuming problem worldwide. At onset of 2016, the National Institute for Health and Care Excellence (NICE) published an update on its guideline on chest pain. Three key changes to the 2010 version were provided by the new NICE guideline. First, the new guideline recommends that the previously proposed pretest probability risk score should no longer be used. Second, they also recommend that a calcium score of zero should no longer be used to rule out coronary artery disease (CAD) in patients with low pretest probability. Third, the new guideline recommends that all patients with new onset chest pain should be investigated with a coronary computed tomographic angiography (CTA) as a first-line investigation. However, in real world the impact of implementation of CTA for the evaluation of new onset chest pain remains to be evaluated, especially regarding its cost effectiveness. The aim of the present report was to discuss the results of the studies supporting new NICE guideline and its comparison with European and US guidelines.
Collapse
|
7
|
Prognostic Value and Therapeutic Perspectives of Coronary CT Angiography: A Literature Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6528238. [PMID: 30306089 PMCID: PMC6165606 DOI: 10.1155/2018/6528238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
Coronary stenosis severity is both a powerful and a still debated predictor of prognosis in coronary artery disease. Coronary computed tomographic angiography (CCTA) has emerged as a noninvasive technique that enables anatomic visualization of coronary artery disease (CAD). CCTA with newer applications, plaque characterization and physiologic/functional evaluation, allows a comprehensive diagnostic and prognostic assessment of otherwise low-intermediate subjects for primary prevention. CCTA measures the overall plaque burden, differentiates plaque subtypes, and identifies high-risk plaque with good reproducibility. Research in this field may also advance towards an era of personalized risk prediction and individualized medical therapy. It has been demonstrated that statins may delay plaque progression and change some plaque features. The potential effects on plaque modifications induced by other medical therapies have also been investigated. Although it is not currently possible to recommend routinely serial scans to monitor the therapeutic efficacy of medical interventions, the plaque modulation, as a part of risk modification, appears a feasible strategy. In this review we summarize the current evidence regarding vulnerable plaque and effects of lipid lowering therapy on morphological features of CAD. We also discuss the potential ability of CCTA to characterize coronary atherosclerosis, stratify prognosis of asymptomatic subjects, and guide medical therapy.
Collapse
|