1
|
Yang X, Wang S, Qi L, Chen S, Du K, Shang Y, Guo J, Fang S, Li J, Zhang H, Chang Y. An efficient method for qualitation and quantitation of multi-components of the herbal medicine Qingjin Yiqi Granules. J Pharm Biomed Anal 2023; 227:115288. [PMID: 36796275 DOI: 10.1016/j.jpba.2023.115288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Qingjin Yiqi Granules (QJYQ) is a Traditional Chinese Medicines (TCMs) prescription for the patients with post-COVID-19 condition. It is essential to carry out the quality evaluation of QJYQ. A comprehensive investigation was conducted by establishing deep-learning assisted mass defect filter (deep-learning MDF) mode for qualitative analysis, ultra-high performance liquid chromatography and scheduled multiple reaction monitoring method (UHPLC-sMRM) for precise quantitation to evaluate the quality of QJYQ. Firstly, a deep-learning MDF was used to classify and characterize the whole phytochemical components of QJYQ based on the mass spectrum (MS) data of ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Secondly, the highly sensitive UHPLC-sMRM data-acquisition method was established to quantify the multi-ingredients of QJYQ. Totally, nine major types of phytochemical compounds in QJYQ were intelligently classified and 163 phytochemicals were initially identified. Furthermore, fifty components were rapidly quantified. The comprehensive evaluation strategy established in this study would provide an effective tool for accurately evaluating the quality of QJYQ as a whole.
Collapse
Affiliation(s)
- Xiaohua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lina Qi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiading Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
3
|
Yue J, Zuo Z, Huang H, Wang Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit Rev Anal Chem 2020; 51:373-398. [PMID: 32166968 DOI: 10.1080/10408347.2020.1736506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genus Panax, as worldwide medicinal plants, has a medical history for thousands of years. Most of the entire genus are traditional ethnobotanical medicine in China, Myanmar, Thailand, Vietnam and Laos, which have given rise to international attention and use. This paper reviewed more than 210 articles and related books on the research of Panax medicinal plants and their Chinese patent medicines published in the last 30 years. The purpose was to review and summarize the species classification, geographical distribution, and ethnic minorities medicinal records of the genus Panax, and further to review the analytical tools and data analysis methods for the authentication and quality assessment of Panax medicinal materials and Chinese patent medicines. Five main technologies applied in the identification and evaluation of Panax have been introduced and summarized. Chromatography was the most widely used one. Further research and development of molecular identification technology had the potential to become a mainstream identification technology. In addition, some novel, controversial, and worthy methods including electronic noses, electronic eyes, and DNA barcoding were also introduced. At the same time, more than 80% of the researches were carried out by a combination of chemometric pattern-recognition technologies and multi-analysis technologies. All the technologies and methods applied can provide strong support and guarantee for the identification and evaluation of genus Panax, and also conduce to excellent reference value for the development and in-depth research of new technologies in Panax.
Collapse
Affiliation(s)
- Jiaqi Yue
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hengyu Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
4
|
Kim D, Kim M, Raña GS, Han J. Seasonal Variation and Possible Biosynthetic Pathway of Ginsenosides in Korean Ginseng Panax ginseng Meyer. Molecules 2018; 23:molecules23071824. [PMID: 30041413 PMCID: PMC6099543 DOI: 10.3390/molecules23071824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Whereas Korean ginseng, Panax ginseng Meyer, is harvested in the fall, the variation of ginsenoside content in field-grown ginseng across seasonal development has never been investigated in Korea. Thus, ultra-high performance liquid chromatography (UHPLC) analysis of nine major ginsenosides, including ginsenoside Rg1, Re, Rf, Rg2, Rb1, Rc, Rb2, Rd, and Ro, in the roots of five-year-old P. ginseng cultivated in Bongwha, Korea in 2017 was performed. The total ginsenoside content changed as many as three times throughout the year, ranging from 1.37 ± 0.02 (dry wt %) in January to 4.26 ± 0.03% in May. Total ginsenoside content in the harvest season was 2.49 ± 0.03%. Seasonal variations of panaxadiol-type ginsenosides (PPD) and panaxatriol-type ginsenosides (PPT) were found to be similar, but more PPD was always measured. However, the seasonal variation of oleanolic acid-type ginsenoside, Ro, was different from that of PPD and PPT, and the highest Ro content was observed in May. The ratio of PPD/PPT, as well as other representative ginsenosides, was compared throughout the year. Moreover, the percent composition of certain ginsenosides in both PPD and PPT types was found to be in a complementary relationship each other, which possibly reflected the biosynthetic pathway of the related ginsenosides. This finding would not only provide scientific support for the production and quality control of the value-added ginseng products, but also facilitate the elucidation of the ginsenoside biosynthetic pathway.
Collapse
Affiliation(s)
- Dongmin Kim
- Metalloenzyme Research Group and Department of Plant Biotechnology, Chung-Ang University, Anseong 17546, Korea.
| | - Mihyang Kim
- Metalloenzyme Research Group and Department of Plant Biotechnology, Chung-Ang University, Anseong 17546, Korea.
| | - Gem Stephen Raña
- Metalloenzyme Research Group and Department of Plant Biotechnology, Chung-Ang University, Anseong 17546, Korea.
| | - Jaehong Han
- Metalloenzyme Research Group and Department of Plant Biotechnology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
5
|
Kim YJ, Joo SC, Shi J, Hu C, Quan S, Hu J, Sukweenadhi J, Mohanan P, Yang DC, Zhang D. Metabolic dynamics and physiological adaptation of Panax ginseng during development. PLANT CELL REPORTS 2018; 37:393-410. [PMID: 29150823 DOI: 10.1007/s00299-017-2236-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
The dynamics of metabolites from leaves to roots of Panax ginseng during development has revealed the tissue-specific and year-specific metabolic networks. Being an essential Oriental medicinal plant, ginseng (Panax ginseng Meyer) is a slow-growing perennial herb-accumulating pharmaceutically active metabolites such as ginsenosides in roots during growth. However, little is known about how ginseng plants survive in the harsh environments such as winter cold and summer heat for a longer period and accumulates those active metabolites as the plant grows. To understand the metabolic kinetics in both source and sink organs such as leaves and roots of ginseng plant, respectively, and to assess the changes in ginsenosides biosynthesis during ginseng growth, we investigated the metabolic profiles from leaves and roots of 1-, 4-, and 6-year-old field-grown ginseng plants. Using an integrated non-targeted metabolomic approach, we identified in total 348 primary and secondary metabolites, which provided us for the first time a global metabolomic assessment of ginseng during growth, and morphogenesis. Strikingly, the osmoprotectants and oxidized chemicals were highly accumulated in 4- and 6-year-old ginseng leaves suggested that ginseng develop a wide range of metabolic strategies to adapt unfavorable conditions as they mature. In 6-year-old plants, ginsenosides were decreased in leaves but increased in roots up to 1.2- to sixfold, supporting the view that there is a long-distance transport of ginsenosides from leaves to roots as ginseng plants mature. Our findings provide insights into the metabolic kinetics during the development of ginseng plant and this could complement the pharmacological importance of ginseng and its compounds according to their age.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
| | - Sung Chul Joo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Chaoyang Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Sheng Quan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Johan Sukweenadhi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
- Crop Biotech Institute and Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
6
|
Ge G, Yan Y, Cai H. Ginsenoside Rh2 Inhibited Proliferation by Inducing ROS Mediated ER Stress Dependent Apoptosis in Lung Cancer Cells. Biol Pharm Bull 2017; 40:2117-2124. [DOI: 10.1248/bpb.b17-00463] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Guanqun Ge
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
7
|
Cheng C, Yuan Q, Zhou H, Huang L. Nondestructive estimation of growth year in ginseng cultivars using the means of mathematical modeling on the basis of allometry. Microsc Res Tech 2016; 79:98-105. [PMID: 26762880 DOI: 10.1002/jemt.22610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/19/2015] [Accepted: 12/06/2015] [Indexed: 11/10/2022]
Abstract
Growth-year authentication has extraordinary significance for plant growth, structure and development research, and has a wide range of applications in value assessment of economic crops. Panax ginseng is the most commonly used medicinal plant in Asian countries. The fix number of growth-year is an important quality evaluation which is difficult to be obtained accurately in current technical conditions. Preliminary authentication theory for growth-year has been described in previous studies using a short-lived perennial medicinal plant (Paeonia lactiflora pall.) as the research material. In this research, we focused on the growth-year estimation in ginseng cultivars, and attempt to explore the age estimation method for vascular plants according to mathematical simulation of the root structure development. Micro data was obtained from 204 individuals of 3 different kinds of ginseng cultivars, which have a series of gradient age and a clear growth record. Outer diameter of the vascular cambium (b) and the radius of cross section (r) were measured with ordinary stereo microscope. We further designed and established two different kinds of authentication model based on the taproot structure development for growth year authentication (P =β*M-α and M = K*X1 (a) (1) X2 (a) (2) ). Moreover, the models were applied to identify the growth year of ginseng without damage using Micro-CT or DEI reconstruction. A potential method, have been recently described, the age of ginseng can be analyzed by telomere length and telomerase activity. However, we found that there are different results indicated in other species. We concluded that microscopic methods perceived currently were provided a more effective means for growth-year authentication.
Collapse
Affiliation(s)
- Chunsong Cheng
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, 000853, Macau.,Key Laboratory of Dao-Di Herbs, National Resource Center of Chinese Material Medical, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Qingxi Yuan
- Institute of High Energy Physics Research, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, 000853, Macau
| | - Luqi Huang
- Key Laboratory of Dao-Di Herbs, National Resource Center of Chinese Material Medical, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| |
Collapse
|
8
|
Analysis of the age of Panax ginseng based on telomere length and telomerase activity. Sci Rep 2015; 5:7985. [PMID: 25614145 PMCID: PMC5379010 DOI: 10.1038/srep07985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/24/2014] [Indexed: 11/17/2022] Open
Abstract
Ginseng, which is the root of Panax ginseng (Araliaceae), has been used in Oriental medicine as a stimulant and dietary supplement for more than 7,000 years. Older ginseng plants are substantially more medically potent, but ginseng age can be simulated using unscrupulous cultivation practices. Telomeres progressively shorten with each cell division until they reach a critical length, at which point cells enter replicative senescence. However, in some cells, telomerase maintains telomere length. In this study, to determine whether telomere length reflects ginseng age and which tissue is best for such an analysis, we examined telomerase activity in the main roots, leaves, stems, secondary roots and seeds of ginseng plants of known age. Telomere length in the main root (approximately 1 cm below the rhizome) was found to be the best indicator of age. Telomeric terminal restriction fragment (TRF) lengths, which are indicators of telomere length, were determined for the main roots of plants of different ages through Southern hybridization analysis. Telomere length was shown to be positively correlated with plant age, and a simple mathematical model was formulated to describe the relationship between telomere length and age for P. ginseng.
Collapse
|
9
|
González-Burgos E, Fernandez-Moriano C, Gómez-Serranillos MP. Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review. J Neuroimmune Pharmacol 2014; 10:14-29. [DOI: 10.1007/s11481-014-9569-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/14/2014] [Indexed: 01/19/2023]
|
10
|
Zhang YC, Li G, Jiang C, Yang B, Yang HJ, Xu HY, Huang LQ. Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules 2014; 19:17381-99. [PMID: 25353387 PMCID: PMC6271886 DOI: 10.3390/molecules191117381] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/26/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to systematically evaluate the effect of the cultivation year on the quality of different ginseng tissues. Qualitative and quantitative analyses of ginsenosides were conducted using a UPLC-UV-MS method. Eight main ginsenosides in three tissues (leaf, rhizome and main root) and four parts (periderm, phloem, cambium and xylem) of ginseng aged from 1 to 13 years were determined using a UPLC-PDA method. Additionally, the antioxidant capacities of ginseng leaves were analyzed by the DPPH, ABTS and HRSA methods. It was found that the contents of ginsenosides increased with cultivation years, causing a sequential content change of ginsenosides in an organ-specific manner: leaf > rhizome > main root. The ratio between protopanaxatriol (PPT, Rg1, Re and RF) and protopanaxadiol (PPD, Rb1, Rb2, RC and Rd) in the main root remained stable (about 1.0), while it increased in leaf from 1.37 to 3.14 and decreased in the rhizome from 0.99 to 0.72. The amount of ginsenosides accumulated in the periderm was 45.48 mg/g, which was more than twice as high compared with the other three parts. Furthermore, the antioxidant activities of ginseng leaves were measured as Trolox equivalents, showing that antioxidant activity increased along with time of cultivation. The results show that the best harvest time for shizhu ginseng is the fifth year of cultivation, and the root and rhizome could be used together within seven planting years for their similar PPT/PPD level. Besides, the quality of the ginseng products would be enhanced with the periderm. The ginseng leaf is rich in ginsenosides and has potential application for its antioxidant capacity.
Collapse
Affiliation(s)
- Ying-Chun Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Geng Li
- Institute of Natural Medicine and Chinese Medicine Resources, Beijing Normal University, Beijing 100700, China.
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hai-Yu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
11
|
Xu XF, Nie LX, Pan LL, Hao B, Yuan SX, Lin RC, Bu HB, Wang D, Dong L, Li XR. Quantitative Analysis of Panax ginseng by FT-NIR Spectroscopy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:741571. [PMID: 24883224 PMCID: PMC4026986 DOI: 10.1155/2014/741571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 05/28/2023]
Abstract
Near-infrared spectroscopy (NIRS), a rapid and efficient tool, was used to determine the total amount of nine ginsenosides in Panax ginseng. In the study, the regression models were established using multivariate regression methods with the results from conventional chemical analytical methods as reference values. The multivariate regression methods, partial least squares regression (PLSR) and principal component regression (PCR), were discussed and the PLSR was more suitable. Multiplicative scatter correction (MSC), second derivative, and Savitzky-Golay smoothing were utilized together for the spectral preprocessing. When evaluating the final model, factors such as correlation coefficient (R (2)) and the root mean square error of prediction (RMSEP) were considered. The final optimal results of PLSR model showed that root mean square error of prediction (RMSEP) and correlation coefficients (R (2)) in the calibration set were 0.159 and 0.963, respectively. The results demonstrated that the NIRS as a new method can be applied to the quality control of Ginseng Radix et Rhizoma.
Collapse
Affiliation(s)
- Xin-fang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Li-xing Nie
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing 100050, China
| | - Li-li Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Bian Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Shao-xiong Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Rui-chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Hai-bo Bu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Dan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Ling Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| | - Xiang-ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wangjing Zhonghuannan Road, Beijing 100102, China
| |
Collapse
|
12
|
Shan SM, Luo JG, Huang F, Kong LY. Chemical characteristics combined with bioactivity for comprehensive evaluation of Panax ginseng C.A. Meyer in different ages and seasons based on HPLC-DAD and chemometric methods. J Pharm Biomed Anal 2013; 89:76-82. [PMID: 24252727 DOI: 10.1016/j.jpba.2013.10.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
Panax ginseng C.A. Meyer has been known as a valuable traditional Chinese medicines for thousands years of history. Ginsenosides, the main active constituents, exhibit prominent immunoregulation effect. The present study first describes a holistic method based on chemical characteristic and lymphocyte proliferative capacity to evaluate systematically the quality of P. ginseng in thirty samples from different seasons during 2-6 years. The HPLC fingerprints were evaluated using principle component analysis (PCA) and hierarchical clustering analysis (HCA). The spectrum-efficacy model between HPLC fingerprints and T-lymphocyte proliferative activities was investigated by principal component regression (PCR) and partial least squares (PLS). The results indicated that the growth of the ginsenosides could be grouped into three periods and from August of the fifth year, P. ginseng appeared significant lymphocyte proliferative capacity. Close correlation existed between the spectrum-efficacy relationship and ginsenosides Rb1, Ro, Rc, Rb2 and Re were the main contributive components to the lymphocyte proliferative capacity. This comprehensive strategy, providing reliable and adequate scientific evidence, could be applied to other TCMs to ameliorate their quality control.
Collapse
Affiliation(s)
- Si-Ming Shan
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Fang Huang
- Department of Pharmacology for Chinese Materia Medica, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|