1
|
Arul Raj JS, Aliyas S, Poomany Arul Soundara Rajan YA, Murugan K, Karuppiah P, Arumugam N, Almansour AI, Karthikeyan P. Spontaneous nanoemulsification of cinnamon essential oil: Formulation, characterization, and antibacterial and antibiofilm activity against fish spoilage caused by Serratia rubidaea BFMO8. Biotechnol Appl Biochem 2024; 71:512-524. [PMID: 38253987 DOI: 10.1002/bab.2555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
The contemporary food industry's uses of nanoemulsions (NEs) include food processing, effective nutraceutical delivery, the development of functional chemicals, and the synthesis of natural preservatives, such as phytocompounds. Although cinnamon essential oil (CEO) is widely used in the cosmetic, pharmaceutical, and food industries, it is difficult to add to aqueous-based food formulations due to its weak stability and poor water solubility. This study describes the formulation of a CEO nanoemulsion (CEONE) by spontaneous emulsification and evaluates its antibacterial and antibiofilm properties against biofilm-forming Serratia rubidaea BFMO8 isolated from spoiled emperor fish (Lethrinus miniatus). Bacteria causing spoilage in emperor fish were isolated and identified as S. rubidaea using common morphological, cultural, and 16S RNA sequencing methods, and their ability to form biofilms and their susceptibility to CEONE were assessed using biofilm-specific methods. The spontaneous emulsification formulation of CEONE was accomplished using water and Tween 20 surfactant by manipulating organic and aqueous phase interface properties and controlling particle growth by capping surfactant increases. The best emulsification, with highly stable nano-size droplets, was accomplished at 750 rpm and a 1:3 ratio concentration. The stable CEONE droplet size, polydispersity index, and zeta potential values were 204.8 nm, 0.115, and -6.05 mV, respectively. FTIR and high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analyses have revealed carboxyl, carbonyl, and phenol-like primary phytochemical functional groups in CEO and CEONE, which contribute to their antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- Jasmin Suriya Arul Raj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Sheena Aliyas
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | | | - Kasi Murugan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Perumal Karthikeyan
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Mohanty D, Padhee S, Sahoo C, Jena S, Sahoo A, Chandra Panda P, Nayak S, Ray A. Integrating network pharmacology and experimental verification to decipher the multitarget pharmacological mechanism of Cinnamomum zeylanicum essential oil in treating inflammation. Heliyon 2024; 10:e24120. [PMID: 38298712 PMCID: PMC10828654 DOI: 10.1016/j.heliyon.2024.e24120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Inflammatory diseases contribute to more than 50 % of global deaths. Research suggests that network pharmacology can reveal the biological mechanisms underlying inflammatory diseases and drug effects at the molecular level. The aim of the study was to clarify the biological mechanism of Cinnamomum zeylanicum essential oil (CZEO) and predict molecular targets of CZEO against inflammation by employing network pharmacology and in vitro assays. First, the genes related to inflammation were identified from the Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The CZEO targets were obtained from the SwissTargetPrediction and Similarity Ensemble Approach (SEA) database. A total of 1057 CZEO and 526 anti-inflammation targets were obtained. The core hub target of CZEO anti-inflammatory was obtained using the protein-protein interaction network. KEGG pathway analysis suggested CZEO to exert anti-inflammatory effect mainly through Tumor necrosis factor, Toll-like receptor and IL-17 signalling pathway. Molecular docking of active ingredients-core targets interactions was modelled using Pyrx software. Docking and simulation studies revealed benzyl benzoate to exhibit good binding affinity towards IL8 protein. MTT assay revealed CZEO to have non-cytotoxic effect on RAW 264.7 cells. CZEO also inhibited the production of NO, PGE2, IL-6, IL-1β and TNF-α and promoted the activity of endogenous antioxidant enzymes in LPS-stimulated RAW 264.7 cells. Additionally, CZEO inhibited intracellular ROS generation, NF-kB nuclear translocation and modulated the expression of downstream genes involved in Toll-like receptor signalling pathway. The results deciphered the mechanism of CZEO in treating inflammation and provided a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Debajani Mohanty
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sucheesmita Padhee
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Chiranjibi Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| | - Asit Ray
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar-751003, Odisha, India
| |
Collapse
|
3
|
Metabolic Engineering of Escherichia coli for the Biosynthesis of α-Copaene from Glucose. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Sabahi S, Abbasi A, Ali Mortazavi S. Characterization of cinnamon essential oil and its application in
Malva sylvestris
seed mucilage edible coating to the enhancement of the microbiological, physicochemical, and sensory properties of lamb meat during storage. J Appl Microbiol 2022; 133:488-502. [DOI: 10.1111/jam.15578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Sahar Sabahi
- Department of Food Science and Technology Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - Amin Abbasi
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Science and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyed Ali Mortazavi
- Department of Food Science and Technology Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
5
|
Erfani A, Khalil Pirouzifard M, Almasi H, Gheybi N, Pirsa S. Application of cellulose plate modified with encapsulated Cinnamomum zelanicum essential oil in active packaging of walnut kernel. Food Chem 2022; 381:132246. [PMID: 35121329 DOI: 10.1016/j.foodchem.2022.132246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 02/07/2023]
Abstract
In this study, Cinnamomum zelanicum essential oil was encapsulated with β-cyclodextrin and sodium caseinate (EO/BCD/Ca) and nanoemulsion was optained. In order to encapsulation of essential oil, different formulations of nanoemulsions containing essential oil were produced by ultrasound method and the effect of different polymers on the particle size and turbidity of the nanoemulsion was investigated. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were used to study the structure and morphology of the produced nanoemulsions. Cinnamomum zelanicum essential oil encapsulated with β-cyclodextrin and sodium caseinate was used to modify porous cellulose plates (Cel/EO/BCD/Ca). Cellulose/encapsulated essential oil plates were used to package the walnut kernel to control oxidative changes during storage. The effect of packaging type (under vacuum and ordinal), plate type and storage time on quality control of walnut kernel and oil extracted from walnut kernel was investigated. The results showed that the particle size of essential oil, essential oil/β-cyclodextrin and essential oil/β-cyclodextrin/sodium caseinate were in the range of 84-85, 713-713 and 237-234 (nm), respectively. The encapsulation efficiency of both formulations was above 70%. Zeta potential was negative for essential oil/β-cyclodextrin/sodium caseinate samples and free essential oil samples. The effect of different polymers on the turbidity of emulsions was significant. The results of sensory evaluation of walnut kernel showed that the use of encapsulated essential oil compared to free essential oil caused the protection of color, taste and other quality characteristics during storage. Also, the essential oil encapsulated with β-cyclodextrin/sodium caseinate had a greater effect on quality control of walnut kernel and its oil than the essential oil encapsulated with β-cyclodextrin. Also, the quality characteristics of walnut kernels and walnut kernel oil packed in vacuum conditions were better than walnut kernels and walnut kernel oil packed in non-vacuum conditions during storage.
Collapse
Affiliation(s)
- Aref Erfani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mir Khalil Pirouzifard
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Nesa Gheybi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
6
|
Evaluation of the in vitro antibacterial activity of some essential oils and their blends against Staphylococcus spp. isolated from episodes of sheep mastitis. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractStaphylococcus aureus and coagulase-negative staphylococci are among the major causes of mastitis in sheep. The main goal of this research was to determine the in vitro antibacterial activity of several essential oils (EOs, n 30), then five of them were chosen and tested alone and in blends against staphylococci isolates. Five bacteria were isolated from episodes of ovine mastitis (two S. aureus and three S. xylosus). Biochemical and molecular methods were employed to identify the isolates and disk diffusion method was performed to determine their antimicrobial-resistance profile. The relative percentage of the main constituents in the tested essential oils and their blends was detected by GC-EIMS analysis. Antibacterial and bactericidal effectiveness of essential oils and blends were evaluated through minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). All of them showed sensitivity to the used antimicrobials. The EOs with the highest antibacterial activity were those belonging to the Lamiaceae family characterized by high concentrations of thymol, carvacrol and its precursor p-cymene, together with cinnamon EO, rich in cinnamaldehyde. In terms of both MIC and MBC values, the blend composed by Thymus capitatus EO 40%, Cinnamomum zeylanicum EO 20%, Thymus serpyllum EO 20% and Satureja montana EO 20% was found to be the most effective against all the isolates. Some essential oils appear to represent, at least in vitro, a valid tool against ovine mastitis pathogens. Some blends showed a remarkable effectiveness than the single oils, highlighting a synergistic effect in relation to the phytocomplex.
Collapse
|
7
|
Abstract
Cinnamomum is a genus of the family Lauraceae, which has been recognized worldwide as an important genus due to its beneficial uses. A great deal of research on its phytochemistry and pharmacological effects has been conducted. It is noteworthy that terpenoids are the characteristic of Cinnamomum due to the peculiar structures and significant biological effects. For a more in-depth study and the better use of Cinnamomum plants in the future, the chemical structures and biological effects of terpenoids obtained from Cinnamomum were summarized in the present study. To date, a total of 181 terpenoids with various skeletons have been isolated from Cinnamomum. These compounds have been demonstrated to play an important role in immunomodulatory, anti-inflammatory, antimicrobial, antioxidant, and anticancer activities. However, studies on the bioactive components from Cinnamomum plants have only focused on a dozen species. Hence, further studies on the potential pharmacological effects need to be conducted in the future.
Collapse
|
8
|
Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5190603. [PMID: 32419807 PMCID: PMC7210559 DOI: 10.1155/2020/5190603] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
This study examines the chemical constituents, antioxidant potential, antibacterial mechanism, and antiproliferative activity of Cinnamomum zeylanicum bark essential oil. The compositions of the oil were analyzed by GC-MS, and the major constituents were found to be (E)-cinnamaldehyde (71.50%), linalool (7.00%), β-caryophyllene (6.40%), eucalyptol (5.40%), and eugenol (4.60%). C. zeylanicum essential oil contained remarkable levels of phenolic and bioactive compounds with outstanding ability to scavenge free radicals and inhibit β-carotene oxidation. The growth of pathogenic and spoilage bacteria, especially Gram-positive ones (i.e. Listeria innocua, Staphylococcus aureus, and Bacillus cereus), was highly inhibited by the oil, compared to the Gram-negative pairs (i.e. Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi). The cells of L. innocua and E. coli (as the most sensitive and resistant strains to the oil, respectively) treated with C. zeylanicum essential oil were observed by scanning electron microscopy to unravel structural changes. It was observed that the essential oil quickly exerted its antibacterial activity through disrupting cell envelope and facilitating the leakage of intracellular compounds. The essential oil had also a dose-dependent antiproliferative effect on adipose-derived mesenchymal stem cells (AT-MSCs), and the cell proliferation could be induced by low concentrations of the oil. The present study indicated that C. zeylanicum essential oil with remarkable antioxidant and antimicrobial properties could be applied to develop novel natural preservatives for food and medicinal purposes.
Collapse
|
9
|
CASTAGNINO GLB, MATEOS A, MEANA A, MONTEJO L, ZAMORANO ITURRALDE LV, CUTULI DE SIMÓN MT. Etiology, symptoms and prevention of chalkbrood disease: a literature review. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2020. [DOI: 10.1590/s1519-9940210332020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT The fungus Ascosphaera apis, responsible for causing the chalkbrood disease of honey bees, is widely present in temperate regions of the northern hemisphere, but has also spread to other regions of the world such as Brazil. Although it is not usually lethal for the colony, it can reduce its population, hampering its development. This study is a review on the disease that presents a broad overview of its development, identification methods as well as ways to control it. Research shows that chalkbrood is associated with several factors and is most frequently found in colonies of Apis bees during the spring, when there is excess humidity and sudden temperature changes in the hive. Other factors such as viral or bacterial infection, the presence of the ectoparasite Varroa destructor, pesticide poisoning and poor nutrition of nurse bees can also affect its incidence and severity. Field diagnosis is made based on the presence of hardened mummified brood in the pupal stage, of white or black color, in the cells and entrance. Affected cells show dead pupae covered with white mycelia, resembling cotton, or hardened, dry and brittle, resembling chalk pieces, which originated the name. To date, there are no efficient methods to reduce the damage caused by chalkbrood. Genetic selection of bees with higher hygienic behavior and disease resistance is recommended.
Collapse
|
10
|
Skariyachan S, Taskeen N, Ganta M, Venkata Krishna B. Recent perspectives on the virulent factors and treatment options for multidrug-resistant Acinetobacter baumannii. Crit Rev Microbiol 2019; 45:315-333. [PMID: 31012772 DOI: 10.1080/1040841x.2019.1600472] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acinetobacter baumannii (AB) is one of the most notorious and opportunistic pathogens, which caused high morbidity and mortality rate and World Health Organization (WHO) declared this bacterium as priority-1 pathogen in 2017. The current antibacterial agents, such as colistins, carbapenems, and tigecyclines have limited applications, which necessitate novel and alternative therapeutic remedies. Thus, the understanding of recent perspectives on the virulent factors and antibiotic resistance mechanism exhibited by the bacteria are extremely important. In addition to many combinatorial therapies of antibacterial, there is several natural compounds demonstrated significant antibacterial potential towards these bacteria. The computational systems biology and high throughput screening approaches provide crucial insights in identifying novel drug targets and lead molecules with therapeutics potential. Hence, this review provides profound insight on the recent aspects of the virulent factors associated with AB, role of biofilm formation in drug resistance and the mechanisms of multidrug resistance. This review further illustrates the status of current therapeutic agents, scope, and applications of natural therapeutics, such as herbal medicines and role of computational biology, immunoinformatics and virtual screening in novel lead developments. Thus, this review provides novel insight on latest developments in drug-resistance mechanism of multidrug-resistant A. baumannii (MDRAB) and discovery of probable therapeutic interventions.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| | - Neha Taskeen
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| | - Meghana Ganta
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| | - Bhavya Venkata Krishna
- a Department of Biotechnology, Dayananda Sagar College of Engineering , Bangalore , India
| |
Collapse
|
11
|
Bellassoued K, Ghrab F, Hamed H, Kallel R, van Pelt J, Lahyani A, Ayadi FM, El Feki A. Protective effect of essential oil of Cinnamomum verum bark on hepatic and renal toxicity induced by carbon tetrachloride in rats. Appl Physiol Nutr Metab 2019; 44:606-618. [PMID: 30994004 DOI: 10.1139/apnm-2018-0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The inner bark of cinnamon (Cinnamomum verum) is widely used as a spice. Cinnamon plants are also a valuable source of essential oil used for medicinal purposes. The present study aimed to investigate the composition and in vitro antioxidant activity of essential oil of C. verum bark (CvEO) and its protective effects in vivo on CCl4-induced hepatic and renal toxicity in rats. Groups of animals were pretreated for 7 days with CvEO (70 or 100 mg/kg body weight) or received no treatment and on day 7 a single dose of CCl4 was used to induce oxidative stress. Twenty-four hours after CCl4 administration, the animals were euthanized. In the untreated group, CCl4 induced an increase in serum biochemical parameters and triggered oxidative stress in both liver and kidneys. CvEO (100 mg/kg) caused significant reductions in CCl4-elevated levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, γ-glutamyl transferase, lactate dehydrogenase, total cholesterol, triglycerides, low-density lipoprotein, urea, and creatinine and increased the level of high-density lipoprotein compared with the untreated group. Moreover, pretreatment with CvEO at doses of 70 and 100 mg/kg before administration of CCl4 produced significant reductions in thiobarbituric acid reactive substances and protein carbonyl levels in liver and kidney tissues compared with the untreated group. The formation of pathological hepatic and kidney lesions induced by the administration of CCl4 was strongly prevented by CvEO at a dose of 100 mg/kg. Overall, this study suggests that administration of CvEO has high potential to quench free radicals and alleviate CCl4-induced hepatorenal toxicity in rats.
Collapse
Affiliation(s)
- Khaled Bellassoued
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Ferdaws Ghrab
- b Coastal and Urban Environments, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia
| | - Houda Hamed
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Rim Kallel
- c Anatomopathology Laboratory, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Jos van Pelt
- d Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Amina Lahyani
- e Biochemistry Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Fatma Makni Ayadi
- e Biochemistry Laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Tunisia
| | - Abdelfattah El Feki
- a Department of Life Sciences, Animal Ecophysiology Laboratory, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
12
|
Gavahian M, Chu YH, Lorenzo JM, Mousavi Khaneghah A, Barba FJ. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit Rev Food Sci Nutr 2018; 60:310-321. [PMID: 30431327 DOI: 10.1080/10408398.2018.1525601] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bakery products, as an important part of a healthy diet, are characterized by their limited shelf-life. Microbiological spoilage of these products not only affects the quality characteristics and result in the economic loss but also threatens consumer's health. Incorporation of chemical preservatives, as one of the most conventional preserving techniques, lost its popularity due to the increasing consumer's health awareness. Therefore, the bakery industry is seeking alternatives to harmful antimicrobial agents that can be accepted by health-conscious customers. In this regard, essential oils have been previously used as either a part of product ingredient or a part of the packaging system. Therefore, the antimicrobial aspect of essential oils and their ability in delaying the microbiological spoilage of bakery products have been reviewed. Several types of essential oils, including thyme, cinnamon, oregano, and lemongrass, can inhibit the growth of harmful microorganisms in bakery products, resulting in a product with extended shelf-life and enhanced safety. Research revealed that several bioactive compounds are involved in the antimicrobial activity of essential oils. However, some limitations, such as the possible negative effects of essential oils on sensory parameters, may limit their applications, especially in high concentrations. In this case, they can be used in combination with other preservation techniques such as using appropriate packaging materials. Further research regarding the commercial production of the bakery products formulated with essential oils is required in this area.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, 30062, Republic of China
| | - Yan-Hwa Chu
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, 30062, Republic of China
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
13
|
Nardoni S, D’Ascenzi C, Rocchigiani G, Papini RA, Pistelli L, Formato G, Najar B, Mancianti F. Stonebrood and chalkbrood in Apis mellifera causing fungi: in vitro sensitivity to some essential oils. Nat Prod Res 2017; 32:385-390. [DOI: 10.1080/14786419.2017.1306703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Simona Nardoni
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Pisa, Italy
| | - Carlo D’Ascenzi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Pisa, Italy
| | - Guido Rocchigiani
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Pisa, Italy
| | | | - Luisa Pistelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Pisa, Pisa, Italy
| | - Giovanni Formato
- Beekeeping Laboratory, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “Mariano Aleandri”, Roma, Italy
| | - Basma Najar
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Pisa, Pisa, Italy
| | - Francesca Mancianti
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Pisa, Italy
| |
Collapse
|
14
|
Zeng JF, Zhu HC, Lu JW, Hu LZ, Song JC, Zhang YH. Two new geranylphenylacetate glycosides from the barks of Cinnamomum cassia. Nat Prod Res 2017; 31:1812-1818. [PMID: 28278616 DOI: 10.1080/14786419.2017.1294175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jun-Fen Zeng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu-Cheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Wu Lu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin-Zhen Hu
- College of Life Science, Hubei University, Wuhan, China
| | - Jin-Chun Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-Hui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Sriramavaratharajan V, Stephan J, Sudha V, Murugan R. Variation in volatile constituents of Cinnamomum keralaense, endemic to the Western Ghats, India. Nat Prod Res 2016; 31:840-843. [DOI: 10.1080/14786419.2016.1244197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jeyamary Stephan
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Veerappan Sudha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Ramar Murugan
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| |
Collapse
|
16
|
Sriramavaratharajan V, Sudha V, Murugan R. Characterization of the leaf essential oils of an endemic species Cinnamomum perrottetii from Western Ghats, India. Nat Prod Res 2015; 30:1085-7. [PMID: 26453373 DOI: 10.1080/14786419.2015.1095746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Essential oils from the leaf of Cinnamomum perrottetii Meissn. collected from three distinct populations in the southern Western Ghats, India were analysed by GC-FID and GC-MS. A total of 56 volatile constituents representing 92.2-96.3% of the oils were identified. Variations in the chemical constituents of the oils were found. Only three major components namely, α-pinene (5.1-6.6%), tau-cadinol (8.7-20.5%) and α-cadinol (7.3-13%) out of 10 were found in all three samples. To the best of our knowledge, this is the first report on the chemical compositions of leaf essential oil of C. perrottetii.
Collapse
Affiliation(s)
| | - Veerappan Sudha
- a School of Chemical and Biotechnology , SASTRA University , Thanjavur , India
| | - Ramar Murugan
- a School of Chemical and Biotechnology , SASTRA University , Thanjavur , India
| |
Collapse
|
17
|
Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi SM. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients 2015; 7:7729-48. [PMID: 26378575 PMCID: PMC4586554 DOI: 10.3390/nu7095359] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Herbs and spices have been used since ancient times, because of their antimicrobial properties increasing the safety and shelf life of food products by acting against foodborne pathogens and spoilage bacteria. Plants have historically been used in traditional medicine as sources of natural antimicrobial substances for the treatment of infectious disease. Therefore, much attention has been paid to medicinal plants as a source of alternative antimicrobial strategies. Moreover, due to the growing demand for preservative-free cosmetics, herbal extracts with antimicrobial activity have recently been used in the cosmetic industry to reduce the risk of allergies connected to the presence of methylparabens. Some species belonging to the genus Cinnamomum, commonly used as spices, contain many antibacterial compounds. This paper reviews the literature published over the last five years regarding the antibacterial effects of cinnamon. In addition, a brief summary of the history, traditional uses, phytochemical constituents, and clinical impact of cinnamon is provided.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran 14359-16471, Iran.
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy.
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran.
| | - Eduardo Sobarzo-Sánchez
- Laboratorio de Química Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran 14359-16471, Iran.
| |
Collapse
|