1
|
Shi J, Tian Y, Chen S, Liao C, Mao G, Deng X, Yu L, Zhu X, Li J. Design, synthesis and antifungal evaluation of phenylthiazole-1,3,4-oxadiazole thione (ketone) derivatives inspired by natural thiasporine A. PEST MANAGEMENT SCIENCE 2023; 79:3439-3450. [PMID: 36966468 DOI: 10.1002/ps.7481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Plant pathogenic fungal infections have become a severe threat to the yield and quality of agricultural products, and new green antifungal agents with high efficiency and low toxicity are needed. In this study, a series of thiasporine A derivatives containing phenylthiazole-1,3,4-oxadiazole thione (ketone) structures were designed and synthesized, and their antifungal activities against six invasive and highly destructive phytopathogenic fungi were evaluated. RESULTS The results found that all compounds showed moderate to potent antifungal activity against six phytopathogenic fungi, and most of the E series compounds showed remarkable antifungal activity against Sclerotinia sclerotiorum and Colletotrichum camelliaet. In particular, compounds E1-E5, E7, E8, E13, E14, E17, and E22 showed more significant antifungal activity against S. sclerotiorum, with half-maximal effective concentration (EC50 ) values of 0.22, 0.48, 0.56, 0.65, 0.51, 0.39, 0.60, 0.56, 0.60, 0.63, and 0.45 μg mL-1 , respectively, which were superior to that of carbendazim (0.70 μg mL-1 ). Further activity studies showed that compound E1 possessed superior curative activities against S. sclerotiorum in vivo and better inhibitory effects on sclerotia germination and the formation of S. sclerotiorum compared with those of carbendazim. CONCLUSIONS This study indicates that these thiasporine A derivatives containing phenylthiazole-1,3,4-oxadiazole thione structures might be used as antifungal agents against S. sclerotiorum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinchao Shi
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yao Tian
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Shunshun Chen
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Changzhou Liao
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoqing Mao
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaoqian Deng
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Linhua Yu
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiang Zhu
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Junkai Li
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Zhu Q, Pan K, Liu H, Hu J, Li Q, Bai X, Zhang M, Qiu J, Hong Q. Cloning and expression of the phenazine-1-carboxamide hydrolysis gene pzcH and the identification of the key amino acids necessary for its activity. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131924. [PMID: 37379601 DOI: 10.1016/j.jhazmat.2023.131924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Phenazine-1-carboxamide (PCN), a phenazine derivative, can cause toxicity risks to non target organisms. In this study, the Gram-positive bacteria Rhodococcus equi WH99 was found to have the ability to degrade PCN. PzcH, a novel amidase belonging to amidase signature (AS) family, responsible for hydrolyzing PCN to PCA was identified from strain WH99. PzcH shared no similarity with amidase PcnH which can also hydrolyze PCN and belong to the isochorismatase superfamily from Gram-negative bacteria Sphingomonas histidinilytica DS-9. PzcH also showed low similarity (˂ 39%) with other reported amidases. The optimal catalysis temperature and pH of PzcH was 30 °C and 9.0, respectively. The Km and kcat values of PzcH for PCN were 43.52 ± 4.82 μM and 17.028 ± 0.57 s-1, respectively. The molecular docking and point mutation experiment demonstrated that catalytic triad Lys80-Ser155-Ser179 are essential for PzcH to hydrolyze PCN. Strain WH99 can degrade PCN and PCA to reduce their toxicity against the sensitive organisms. This study enhances our understanding of the molecular mechanism of PCN degradation, presents the first report on the key amino acids in PzcH from the Gram-positive bacteria and provides an effective strain in the bioremediation PCN and PCA contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
3
|
An Exploration of the Effect of the Kleier Model and Carrier-Mediated Theory to Design Phloem-Mobile Pesticides Based on Researching the N-Alkylated Derivatives of Phenazine-1-Carboxylic Acid-Glycine. Molecules 2022; 27:molecules27154999. [PMID: 35956949 PMCID: PMC9370529 DOI: 10.3390/molecules27154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a−4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil−water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 μΜ, 13.98 μΜ, and 17.63 μΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 μΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.
Collapse
|
4
|
Novel diamide derivatives: Synthesis, characterization, urease inhibition, antioxidant, antibacterial, and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Zhu X, Zhang M, Xiao Y, Hsiang T, Hu C, Li J. Systemic fungicidal activity of phenazine-1-carboxylic acid-valine conjugate against tobacco sore shin and its translocation and accumulation in tobacco (Nicotiana tabacum L.). PEST MANAGEMENT SCIENCE 2022; 78:1117-1127. [PMID: 34796616 DOI: 10.1002/ps.6724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tobacco sore shin caused by Rhizoctonia solani Kühn is a major soil-borne fungal disease of tobacco, gradually causing infected stems to become thin and dry, leading to great losses to China's tobacco industry. Fungicides with phloem mobility are needed for application to foliage to effectively control root or vascular system pathogens. In this study, phenazine-1-carboxylic acid-valine conjugate (PCA-Val) with strong phloem mobility was tested for control of tobacco sore shin. In vitro fungicidal activity, systemicity, and in vivo efficacy of PCA-Val against R. solani in tobacco seedling were evaluated. RESULTS In vitro fungicidal activity of PCA-L-Val against R. solani was lower than that of PCA or PCA-D-Val, but the in vivo protective activity and curative activity of PCA-L-Val was the highest among these chemicals tested. The systemicity tests in tobacco seedlings revealed that PCA did not possess phloem mobility, while PCA-L-Val and PCA-D-Val exhibited strong phloem mobility and could be transported and accumulated in the lower part of the seedling as well as throughout the phloem. In addition, we also found that, just like reported hormone amino acid conjugates, PCA-L-Val could be hydrolyzed by tobacco seedlings, to release free PCA. CONCLUSIONS The current research results indicated that PCA-L-Val possess good phloem transport in tobacco and promising in vivo antifungal activity against R. solani, which can be used as a phloem-mobile fungicide against tobacco sore shin in production practice.
Collapse
Affiliation(s)
- Xiang Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Min Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yongxin Xiao
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Ciyin Hu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Advances in Phenazines over the Past Decade: Review of Their Pharmacological Activities, Mechanisms of Action, Biosynthetic Pathways and Synthetic Strategies. Mar Drugs 2021; 19:md19110610. [PMID: 34822481 PMCID: PMC8620606 DOI: 10.3390/md19110610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Phenazines are a large group of nitrogen-containing heterocycles, providing diverse chemical structures and various biological activities. Natural phenazines are mainly isolated from marine and terrestrial microorganisms. So far, more than 100 different natural compounds and over 6000 synthetic derivatives have been found and investigated. Many phenazines show great pharmacological activity in various fields, such as antimicrobial, antiparasitic, neuroprotective, insecticidal, anti-inflammatory and anticancer activity. Researchers continued to investigate these compounds and hope to develop them as medicines. Cimmino et al. published a significant review about anticancer activity of phenazines, containing articles from 2000 to 2011. Here, we mainly summarize articles from 2012 to 2021. According to sources of compounds, phenazines were categorized into natural phenazines and synthetic phenazine derivatives in this review. Their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies were summarized. These may provide guidance for the investigation on phenazines in the future.
Collapse
|
7
|
Zhu X, Chen S, Zheng Y, Zhang Y, Hsiang T, Huang R, Qi J, Gan T, Chang Y, Li J. Antifungal and insecticidal activities of rhein derivatives: synthesis, characterization and preliminary structure-activity relationship studies. Nat Prod Res 2021; 36:4140-4146. [PMID: 34533080 DOI: 10.1080/14786419.2021.1977804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There is an urgent need to replace highly polluting pesticides with environmentally friendly green pesticides of high efficiency and low toxicity, because of the growing concern for quality and safety of agricultural products. To discover new pesticides with diverse chemical structures from natural products, a series of rhein derivatives 3a-9b were designed, synthesized, and evaluated for their antifungal activity and insecticidal activity. The bioassay showed that some compounds exhibited moderate antifungal activity against Rhizoctonia solani, but lower activity against the other five pathogens. Surprisingly, most compounds displayed potent insecticidal activity against Spodoptera litura and Tetranychus cinnabarinus at a concentration of 2 μmol/mL. In particular, compounds 3a, 5a and 3 b exhibited potent insecticidal activities against S. litura at 72 h, with mortality rates of 100%, 100% and 92.1%, respectively, which were equivalent to that of the insecticide fipronil (100%). Their structure-activity relationships were also discussed. The findings of this experiment provide helpful research ideas for the development of these rhein derivatives as novel natural product-based pesticides in crop protection.
Collapse
Affiliation(s)
- Xiang Zhu
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Shunshun Chen
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yan Zheng
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yong Zhang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Rong Huang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Jingwei Qi
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tian Gan
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Yue Chang
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Ou J, Li H, Ou X, Yang Z, Chen M, Liu K, Teng Y, Xing B. Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111374. [PMID: 32977284 DOI: 10.1016/j.ecoenv.2020.111374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Phenazines, a large group of nitrogen-containing heterocycles with promising bioactivities, can be widely used as medicines and pesticides. But phenazines also generate toxicity risks due to their non-selective DNA binding. The environmental fate of phenazines in soils is the key to assess their risks; however, hitherto, there have been very few related studies. Therefore in the present study, the degradation, adsorption and leaching behaviors of a typical natural phenazine-phenazine-1-carboxamide (PCN) in agricultural soils from three representative places in China with different physicochemical properties were, for the first time, systematically studied in laboratory simulation experiments. Our results indicated that the degradation of PCN in all the tested soils followed the first order kinetics, with half-lives ranging from 14.4 to 57.8 d under different conditions. Soil anaerobic microorganisms, organic matter content and pH conditions are important factors that regulating PCN degradation. The adsorption data of PCN were found to be well fitted using the Freundlich model, with the r2 values above 0.978. Freundlich adsorption coefficient Kf of PCN ranged from 5.75 to 12.8 [(mg/kg)/(mg/L)1/n] in soils. The retention factor Rf values ranged from 0.0833 to 0.354, which means that the mobility of PCN in the three types of soil is between immobile to moderately mobile. Our results demonstrate that PCN is easily degraded, has high adsorption affinity and low mobility in high organic matter content and clay soils, thus resulting in lower risks of contamination to groundwater systems. In contrast, it degraded slowly, has low adsorption affinity and moderately mobile in soils with low organic matter and clay content, therefore it has higher polluting potential to groundwater systems. Overall, these findings provide useful insights into the future evaluation of environmental as well as health risks of PCN.
Collapse
Affiliation(s)
- Jiang Ou
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China; National Engineering Research Center for Agrochemicals, And Hunan J&F Test Co.Ltd, Hunan Research Institute of Chemical Industry, Changsha, 410014, China
| | - Hui Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Xiaoming Ou
- National Engineering Research Center for Agrochemicals, And Hunan J&F Test Co.Ltd, Hunan Research Institute of Chemical Industry, Changsha, 410014, China
| | - Zhifu Yang
- National Engineering Research Center for Agrochemicals, And Hunan J&F Test Co.Ltd, Hunan Research Institute of Chemical Industry, Changsha, 410014, China
| | - Mengxian Chen
- National Engineering Research Center for Agrochemicals, And Hunan J&F Test Co.Ltd, Hunan Research Institute of Chemical Industry, Changsha, 410014, China
| | - Kailin Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Yuting Teng
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
9
|
Jin ZJ, Zhou L, Sun S, Cui Y, Song K, Zhang X, He YW. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201. ACS Synth Biol 2020; 9:1802-1812. [PMID: 32584550 DOI: 10.1021/acssynbio.0c00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clusters, phz1 and phz2, for phenazine-1-carboxylic acid (PCA) biosynthesis; PCA is further converted into PCN by this strain using a functional phzH-encoding glutamine aminotransferase. However, PCN levels in PA1201 constitute approximately one-fifth of PCA levels and the optimal temperature for PCN synthesis is 28 °C. In this study, the phzH open reading frame (ORF) and promoter region were investigated and reannotated. phzH promoter PphzH was found to be a weak promoter, and PhzH levels were not sufficient to convert all of the native PCA into PCN. Following RNA Seq and promoter-lacZ fusion analyses, a strong quorum sensing (QS)- and thermo-regulated promoter PrhlI was identified and characterized. The activity of PphzH is approximately 1% of PrhlI in PA1201. After three rounds of promoter editing and swapping by PrhlI, a new PCN-overproducing strain UP46 was generated. The optimal fermentation temperature for PCN biosynthesis in UP46 was increased from 28 to 37 °C and the PCN fermentation titer increased 179.5-fold, reaching 14.1 g/L, the highest ever reported.
Collapse
Affiliation(s)
- Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Ji’nan, 250014, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Xiong Y, Zhu X, Hu J, Wang Y, Du X, Li J, Wu Q. Effect of introducing amino acids into phenazine-1-carboxylic acid on phloem mobility. Nat Prod Res 2020; 35:4373-4379. [PMID: 31984778 DOI: 10.1080/14786419.2020.1716347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To develop new phenazine carboxylic acid derivatives with better phloem mobility, five novel 7-amino acid substituted phenazine-1-carboxylic acids were synthesised by introducing amino acids into PCA at the 7-position. The phloem mobility experiments in Ricinus communis seedlings showed that retaining the carboxyl group of PCA and conjugating amino acids to its phenazine ring can also endow PCA with phloem mobility. Comparing our previous research, we found the amino acids substituted at 7-position on phenazine ring of PCA could clearly enhance the phloem mobility of PCA than that of amino acids conjugated with carboxyl group. Especially, the phloem transport concentration of the compound 7-L-isoleucine substituted PCA (7d) was 21 times higher than PCA-L-isoleucine conjugate (8d). These data suggest that the introduction of amino acids at different structural sites on the phenazine ring could effectively enhance the phloem mobility of PCA and it is worth a further study.
Collapse
Affiliation(s)
- Yongtong Xiong
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Xiang Zhu
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Jinyu Hu
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Yunping Wang
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaoying Du
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Qinglai Wu
- School of Agriculture, Yangtze University, Jingzhou, China.,Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
11
|
Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities. Biomolecules 2020; 10:biom10010074. [PMID: 31906487 PMCID: PMC7022268 DOI: 10.3390/biom10010074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
Abstract
The phytochemical investigation of Fraxinus hupehensis led to the isolation and characterization of ten compounds which were identified as fraxin (1), fraxetin (2), esculetin (3), cichoriin (4), euphorbetin (5), kaempferol-3-O-β-rutinoside (6), oleuropein (7), linoleic acid (8), methyl linoleate (9), and β-sitosterol (10). Structures of the isolated constituents were characterized by 1H NMR, 13C NMR and HRMS. All the compounds, except compounds 3 and 4, were isolated for the first time from this plant. Further, this was the first report for the occurrence of compound 5 in the Fraxinus species. Antifungal activity evaluation showed that compound 2 exhibited significant inhibitory effects against Bipolaris maydis, Sclerotium rolfsii, and Alternaria solani with EC50 values of 0.31 ± 0.01 mmol/L, 10.50 ± 0.02 mmol/L, and 0.40 ± 0.02 mmol/L respectively, compared to the positive control, Carbendazim, with its EC50 values of 0.74 ± 0.01 mmol/L, 1.78 ± 0.01 mmol/L and 1.41 ± 0.00 mmol/L. Herbicidal activity tests showed that compounds 8-10 had strong inhibitory effects against the roots of Echinochloa crus-galli with EC50 values of 1.16 ± 0.23 mmol/L, 1.28 ± 0.58 mmol/L and 1.33 ± 0.35 mmol/L respectively, more potently active than that of the positive control, Cyanazine, with its EC50 values of 1.56 ± 0.44 mmol/L. However, none of the compounds proved to be active against the tested bacteria (Erwinia carotovora, Pseudomonas syringae, and Ralstonia solanacearum).
Collapse
|
12
|
Zhu X, Yu L, Hsiang T, Huang D, Xu Z, Wu Q, Du X, Li J. The influence of steric configuration of phenazine-1-carboxylic acid-amino acid conjugates on fungicidal activity and systemicity. PEST MANAGEMENT SCIENCE 2019; 75:3323-3330. [PMID: 31021517 DOI: 10.1002/ps.5455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/30/2019] [Accepted: 04/25/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Conjugating an amino acid onto existing fungicidal parent structures has been demonstrated to be an effective way to endow non-phloem mobile fungicides with phloem mobility. To alter the systemicity of the fungicide PCA (phenazine-1-carboxylic acid), 10 amino acids derivatives of this fungicide were designed and synthesized, and their synthesis, characterization, phloem and xylem mobility in Ricinus communis L, and their fungicidal activity in vitro are described. RESULTS The systemicity experiments in Ricinus communis system demonstrated that all conjugates exhibited obvious phloem mobility compared with non-phloem-mobile PCA, and the introduction of an L-amino acid to PCA more greatly enhanced the phloem mobility. The five D-amino acid conjugates exhibited higher xylem mobility than that of PCA and of each corresponding L-amino acid conjugate. Most conjugates were found to exhibit moderate in vitro fungicidal activities against six pathogenic fungi, which were lower than that of PCA. The results of the bioassay showed fungicidal activities of PCA-amino acid conjugates associated not only with different amino acids, but also with their conformation. Conjugation with D-amino acid contributed to the in vitro fungicidal activities of PCA-amino acid conjugates. CONCLUSIONS The current research offers a new strategy for enhancing the systemicity of non-phloem-mobile fungicides and presents some useful information on the effects of introducing amino acids of different steric configurations on the fungicidal activity, phloem and xylem mobility of the parent fungicide. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Zhu
- College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Linhua Yu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Di Huang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Zhihong Xu
- College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Qinglai Wu
- College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Xiaoying Du
- College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| | - Junkai Li
- College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Pesticides, Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Xiong Y, Huang G, Yao Z, Zhao C, Zhu X, Wu Q, Zhou X, Li J. Screening Effective Antifungal Substances from the Bark and Leaves of Zanthoxylum avicennae by the Bioactivity-Guided Isolation Method. Molecules 2019; 24:molecules24234207. [PMID: 31756955 PMCID: PMC6930455 DOI: 10.3390/molecules24234207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/04/2022] Open
Abstract
To find good antifungal substances by the bioactivity-guided isolation method, we tracked down the effective antifungal substances in the bark and leaves of Zanthoxylum avicennae, and isolated three antifungal compounds 1, 2, and 3. The structures were identified as xanthyletin, luvangetin, and avicennin by 1H-NMR, 13C-NMR, and HRMS spectra. Particularly, compound 2 had several isomers, and the 1H-NMR spectra of 2 in different solvents showed a significant difference. To determine the stereo structure of 2, a single crystal was prepared and identified by X-ray diffraction as Luvangetin. Moreover, the difference of 1H-NMR data of 2 between in solvent dimethyl sulfoxide-d6 (DMSO-d6) and deuterated chloroform (CDCl3), and other reported isomers were discussed for the first time. The bioassay results indicated that the three compounds 1, 2, and 3 displayed low to high antifungal activities against tested phytopathogenic fungi. In particular, all compounds 1, 2, and 3 showed excellent antifungal activities against Pyricularia oryzae and Z. avicennae, with the values of half maximal effective concentration (EC50) ranging from 31 to 61 mg/L, and compound 3 was also identified as a more potent inhibitor against Fusaium graminearum (EC50 = 43.26 ± 1.76 mg/L) compared with fungicide PCA (phenazine-1-carboxylic acid) (EC50 = 52.34 ± 1.53 mg/L). The results revealed that compounds 1, 2, and 3 were the main antifungal substances of Z. avicennae, and can be used as lead compounds of a fungicide, which has good development value and prospect.
Collapse
Affiliation(s)
- Yongtong Xiong
- School of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.X.); (G.H.); (Z.Y.); (C.Z.); (X.Z.)
- Institute of Pesticides, Yangtze University, Jingzhou 434025, China
| | - Guan Huang
- School of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.X.); (G.H.); (Z.Y.); (C.Z.); (X.Z.)
- Institute of Pesticides, Yangtze University, Jingzhou 434025, China
| | - Zongli Yao
- School of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.X.); (G.H.); (Z.Y.); (C.Z.); (X.Z.)
- Institute of Pesticides, Yangtze University, Jingzhou 434025, China
| | - China Zhao
- School of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.X.); (G.H.); (Z.Y.); (C.Z.); (X.Z.)
- Institute of Pesticides, Yangtze University, Jingzhou 434025, China
| | - Xiang Zhu
- School of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.X.); (G.H.); (Z.Y.); (C.Z.); (X.Z.)
- Institute of Pesticides, Yangtze University, Jingzhou 434025, China
| | - Qinglai Wu
- School of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.X.); (G.H.); (Z.Y.); (C.Z.); (X.Z.)
- Institute of Pesticides, Yangtze University, Jingzhou 434025, China
- Correspondence: (Q.W.); (X.Z.); (J.L.); Tel.: +86-716-8066314 (Q.W.)
| | - Xudong Zhou
- TCM and Ethnomedicine Innovation & Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Correspondence: (Q.W.); (X.Z.); (J.L.); Tel.: +86-716-8066314 (Q.W.)
| | - Junkai Li
- School of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.X.); (G.H.); (Z.Y.); (C.Z.); (X.Z.)
- Institute of Pesticides, Yangtze University, Jingzhou 434025, China
- Correspondence: (Q.W.); (X.Z.); (J.L.); Tel.: +86-716-8066314 (Q.W.)
| |
Collapse
|
14
|
Design, Synthesis, Phloem Mobility, and Bioactivities of a Series of Phenazine-1-Carboxylic Acid-Amino Acid Conjugates. Molecules 2018; 23:molecules23092139. [PMID: 30149611 PMCID: PMC6225111 DOI: 10.3390/molecules23092139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Developing fungicides with phloem mobility that can be applied to leaves to control root or vascular pathogens has long been desirable. To achieve this goal, an efficient and economical strategy involves introducing an amino acid into the existing highly active parent pesticide molecule. Hence, 12 L-phenazine-1-carboxylic acid (PCA)-amino acid conjugates 4a⁻l were designed and synthesized via a simple synthetic route. In vitro bioassays results showed that all synthesized compounds 4a⁻l exhibited certain fungicidal activities against six tested fungi. Compound 4c exhibited relatively good fungicidal activity against Rhizoctonia solani, and the EC50 value was 0.084 ± 0.006 mmol/L. The phloem mobility experiments revealed that introducing an amino acid to PCA could effectively endow PCA with phloem mobility in R. communis L. Among them, nine conjugates were found in phloem sap, and L-PCA-Valine 4d exhibited the highest phloem mobility. Analysis results from the prediction of the Kleier model indicated that an active carrier-mediated mechanism may be involved in L-PCA-amino acid conjugates-a result that needs to be confirmed and complemented with further tests. The current research provides useful data for modifying non-phloem-mobile fungicidal molecules to phloem-mobile types.
Collapse
|