1
|
Mohammed HS, Elariny HA, Seif-Eldein NA, Mahgoub S, El-Said NT, Abu El Wafa SA, Taha EF. Investigating the involvement of the NLRP3/ASC/caspase-1 and NF-κb/MAPK pathways in the pathogenesis of gouty arthritis: Insights from irradiated and non-irradiated Trifolium alexandrium L. extracts and some metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118566. [PMID: 39002823 DOI: 10.1016/j.jep.2024.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1β, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1β, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.
Collapse
Affiliation(s)
- Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Noha A Seif-Eldein
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, 44511, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Eman Fs Taha
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
2
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
3
|
Nicolosi RM, Bonincontro G, Imperia E, Badiali C, De Vita D, Sciubba F, Dugo L, Guarino MPL, Altomare A, Simonetti G, Pasqua G. Protective Effect of Procyanidin-Rich Grape Seed Extract against Gram-Negative Virulence Factors. Antibiotics (Basel) 2023; 12:1615. [PMID: 37998817 PMCID: PMC10668874 DOI: 10.3390/antibiotics12111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Biofilm formation and lipopolysaccharide (LPS) are implicated in the pathogenesis of gastrointestinal (GI) diseases caused by Gram-negative bacteria. Grape seeds, wine industry by-products, have antioxidant and antimicrobial activity. In the present study, the protective effect of procyanidin-rich grape seed extract (prGSE), from unfermented pomace of Vitis vinifera L. cv Bellone, on bacterial LPS-induced oxidative stress and epithelial barrier integrity damage has been studied in a model of Caco-2 cells. The prGSE was characterized at the molecular level using HPLC and NMR. The in vitro activity of prGSE against formation of biofilm of Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli was investigated. In vivo, prGSE activity using infected Galleria mellonella larvae has been evaluated. The results show that the prGSE, if administered with LPS, can significantly reduce the LPS-induced permeability alteration. Moreover, the ability of the extract to prevent Reactive Oxygen Species (ROS) production induced by the LPS treatment of Caco-2 cells was demonstrated. prGSE inhibited the biofilm formation of E. coli and S. Typhimurium. In terms of in vivo activity, an increase in survival of infected G. mellonella larvae after treatment with prGSE was demonstrated. In conclusion, grape seed extracts could be used to reduce GI damage caused by bacterial endotoxin and biofilms of Gram-negative bacteria.
Collapse
Affiliation(s)
- Roberta Maria Nicolosi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Elena Imperia
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Daniela De Vita
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
| | - Michele Pier Luca Guarino
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Operative Research Unit of Gastroenterology, University Policlinico Foundation Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Annamaria Altomare
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (E.I.); (L.D.)
- Research Unit of Gastroenterology, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.N.); (G.B.); (C.B.); (D.D.V.); (F.S.); (G.P.)
| |
Collapse
|
4
|
De Micco V, Aronne G, Caplin N, Carnero-Diaz E, Herranz R, Horemans N, Legué V, Medina FJ, Pereda-Loth V, Schiefloe M, De Francesco S, Izzo LG, Le Disquet I, Kittang Jost AI. Perspectives for plant biology in space and analogue environments. NPJ Microgravity 2023; 9:67. [PMID: 37604914 PMCID: PMC10442387 DOI: 10.1038/s41526-023-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.
Collapse
Affiliation(s)
- Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy.
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Nicol Caplin
- SciSpacE Team, Directorate of Human and Robotic Exploration Programmes, European Space Agency (ESA), Noordwijk, Netherlands
| | - Eugénie Carnero-Diaz
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Boeretang 200, 2400, Mol, Belgium
| | - Valérie Legué
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Mona Schiefloe
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| | - Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Isabel Le Disquet
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Ann- Iren Kittang Jost
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| |
Collapse
|
5
|
Faraoni P, Cecchi L, Bellumori M, Gnerucci A, Ranaldi F, Mulinacci N. Virgin Olive Oil By-Products: Biological Activity of Phenolic Extract of Pâté on AGS Gastric Cells. Int J Mol Sci 2023; 24:ijms24097959. [PMID: 37175669 PMCID: PMC10178092 DOI: 10.3390/ijms24097959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pâté is a by-product of olive oil production which represents an abundant source of phenolic compounds and can be used for food formulation, reducing its environmental impact and promoting a circular economy. In this context, the effects of a hydroalcoholic extract of pâté were evaluated for the first time in an AGS human cell line commonly used as model of gastric mucosa. Pâté was obtained from Tuscan olives; the total phenolic content was 16.6 mg/g dried extract, with verbascoside and secoiridoid derivatives as the most abundant phenols. The phenolic pâté extract did not alter viability, distribution of cell cycle phases or proliferation and migration of AGS cells at the tested concentrations. Seven enzymes were chosen to investigate the metabolic effect of the pâté extract in the context of oxidative stress. Pâté produced a statistically significant increase in the activity of key enzymes of some metabolic pathways: Lactate dehydrogenase, Enolase, Pyruvate kinase, Glucose 6-phosphate dehydrogenase, Citrate synthase, 3-Hydroxyacyl-CoA dehydrogenase and Hexokinase. Pre-treatments with the extract of pâté at 100 µg/mL or 200 µg/mL, as observed through PCA analysis, appeared able to counteract the enzymatic activity alterations due to oxidative stress induced by H2O2 1 mM and 2 mM. The results indicate that dried pâté, due to its phenolic components, can be proposed as a new functional food ingredient.
Collapse
Affiliation(s)
- Paola Faraoni
- Department of Experimental and Clinic Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139 Florence, Florence, Italy
| | - Lorenzo Cecchi
- Department of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Florence, Italy
| | - Maria Bellumori
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Gnerucci
- Department of Physics and Astronomy, University of Florence, Via Sansone, 1, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesco Ranaldi
- Department of Experimental and Clinic Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139 Florence, Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Division of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Ibrahim N, Eldahshan OA, Elshawi OE. Phytochemical screening and radioprotective potential of Jasminum grandiflorum methanol extract against gamma irradiation-induced oxidative damage and diverse inflammatory mediators in lungs of male Swiss Albino Rats. Nat Prod Res 2023. [DOI: 10.1080/14786419.2023.2181801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Omama E. Elshawi
- Clinical Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Protective Role of Natural Compounds under Radiation-Induced Injury. Nutrients 2022; 14:nu14245374. [PMID: 36558533 PMCID: PMC9786992 DOI: 10.3390/nu14245374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, evidence has shown the potential therapeutic effects of different natural compounds for the prevention and treatment of radiotherapy-induced mucositis (RIOM). RIOM represents one of the most frequent side effects associated with anti-neoplastic treatments affecting patients' quality of life and treatment response due to radiation therapy discontinuation. The innate radio-protective ability of natural products obtained from plants is in part due to the numerous antioxidants possessed as a part of their normal secondary metabolic processes. However, oxygen presence is a key point for radiation efficacy on cancer cells. The aim of this review is to describe the most recent evidence on radiation-induced injury and the emerging protective role of natural compounds in preventing and treating this specific damage without compromising treatment efficacy.
Collapse
|
8
|
Guo L, Wu B, Wang X, Kou X, Zhu X, Fu K, Zhang Q, Hong S, Wang X. Long-term low-dose ionizing radiation induced chromosome-aberration-specific metabolic phenotype changes in radiation workers. J Pharm Biomed Anal 2022; 214:114718. [DOI: 10.1016/j.jpba.2022.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
9
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
10
|
Watkins P, Hughes J, Gamage TV, Knoerzer K, Ferlazzo ML, Banati RB. Long term food stability for extended space missions: a review. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:79-95. [PMID: 35065765 DOI: 10.1016/j.lssr.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
At present, human spaceflight is confined to low Earth orbit but, in future, will again go to the Moon and, beyond, to Mars. The provision of food during these extended missions will need to meet the special nutritional and psychosocial needs of the crew. Terrestrially grown and processed food products, currently provided for consumption by astronauts/cosmonauts, have not yet been systematically optimised to maintain their nutritional integrity and reach the shelf-life necessary for extended space voyages. Notably, space food provisions for Mars exploration will be subject to extended exposure to galactic cosmic radiation and solar particle events, the impact of which is not fully understood. In this review, we provide a summary of the existing knowledge about current space food products, the impact of radiation and storage on food composition, the identification of radiolytic biomarkers and identify gaps in our knowledge that are specific in relation to the effect of the cosmic radiation on food in space.
Collapse
Affiliation(s)
- Peter Watkins
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia.
| | - Joanne Hughes
- CSIRO, Agriculture and Food, 39 Kessels Road, Coopers Plains, Qld 4108, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Thambaramala V Gamage
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Kai Knoerzer
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Mélanie L Ferlazzo
- ANSTO, Human Health (Space Health Program), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France
| | - Richard B Banati
- ANSTO, Human Health (Space Health Program), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| |
Collapse
|
11
|
Comparison between In Vitro Chemical and Ex Vivo Biological Assays to Evaluate Antioxidant Capacity of Botanical Extracts. Antioxidants (Basel) 2021; 10:antiox10071136. [PMID: 34356369 PMCID: PMC8301118 DOI: 10.3390/antiox10071136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The anti-oxidative activity of plant-derived extracts is well-known and confers health-promoting effects on functional foods and food supplements. Aim of this work is to evaluate the capability of two different assays to predict the real biological antioxidant efficiency. At this purpose, extracts from five different plant-derived matrices and commercial purified phytochemicals were analyzed for their anti-oxidative properties by using well-standardized in vitro chemical method (TEAC) and an ex vivo biological assay. The biological assay, a cellular membrane system obtained from erythrocytes of healthy volunteers, is based on the capability of phytochemicals treatment to prevent membrane lipid peroxidation under oxidative stress by UV-B radiation. Plant extracts naturally rich in phenols with different structure and purified phytochemicals showed different in vitro and ex vivo antioxidant capacities. A high correlation between phenolic contents of the plant-derived extracts and their ability to prevent oxidative injuries in a biological system was found, thus underlying the relevance of this class of metabolites in preventing oxidative stress. On the other hand, a low correlation between the antioxidant capacities was shown between in vitro and ex vivo antioxidant assay. Moreover, data presented in this work show how food complex matrices are more effective in preventing oxidative damages at biological level than pure phytochemicals, even if for these latter, the antioxidant activity was generally higher than that observed for food complex matrices.
Collapse
|
12
|
Dril AA, Sapozhnikov AN. Study of physicochemical changes and microbiological parameters of semi-finished potato products after electron-beam sterilization. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2021. [DOI: 10.21285/2227-2925-2020-10-4-666-677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
General principles of developing novel radioprotective agents for nuclear emergency. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Simonetti G, Brasili E, Pasqua G. Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis vinifera L. against Human Pathogens. Molecules 2020; 25:E3748. [PMID: 32824589 PMCID: PMC7464220 DOI: 10.3390/molecules25163748] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Phenolic compounds, the most widely distributed class of natural products in the plants, show several biological properties including antifungal activity. Phenolics contained in grapes can be classified in two main groups, flavonoids and non-flavonoids compounds. Variability and yield extraction of phenolic and polyphenolic compounds from different matrices of Vitis vinifera depends of cultivar, climate, soil condition and process technology. Unripe grapes, berry skins and seeds, leaves, canes and stems and not-fermented and fermented pomaces represent large reusable and valuable wastes from agricultural and agro-industrial processes. This review summarizes studies that examine the extraction method, chemical characterization, and antifungal activity of phenolic and polyphenolic compounds from edible and non-edible V. vinifera matrices against human fungal pathogens. In the world, around one billion people have fungal diseases related to skin, nail or hair and around 150 million have systemic diseases caused by fungi. Few studies on antifungal activity of plant extracts have been performed. This review provides useful information for the application of V. vinifera phenolics in the field of antifungals for human use.
Collapse
Affiliation(s)
| | | | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P. Aldo Moro 5, 00185 Rome, Italy; (G.S.); (E.B.)
| |
Collapse
|
15
|
Pires F, Magalhães-Mota G, Geraldo VPN, Ribeiro PA, Oliveira ON, Raposo M. The impact of blue light in monolayers representing tumorigenic and nontumorigenic cell membranes containing epigallocatechin-3-gallate. Colloids Surf B Biointerfaces 2020; 193:111129. [PMID: 32502833 DOI: 10.1016/j.colsurfb.2020.111129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
Natural products such as epigallocatechin-3-gallate (EGCG) have been suggested for complementary treatments of cancer, since they lower toxic side effects of anticancer drugs, and possess anti-inflammatory and antioxidant properties that inhibit carcinogenesis. Their effects on cancer cells depend on interactions with the membrane, which is the motivation to investigate Langmuir monolayers as simplified membrane models. In this study, EGCG was incorporated in zwitterionic dipalmitoyl phosphatidyl choline (DPPC) and anionic dipalmitoyl phosphatidyl serine (DPPS) Langmuir monolayers to simulate healthy and cancer cells membranes, respectively. EGCG induces condensation in surface pressure isotherms for both DPPC and DPPS monolayers, interacting mainly via electrostatic forces and hydrogen bonding with the choline and phosphate groups of the phospholipids, according to data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Both monolayers become more compressible upon interaction with EGCG, which may be correlated to the synergy between EGCG and anticancer drugs reported in the literature. The interaction with EGCG is stronger for DPPC, leading to stronger morphological changes in Brewster angle microscopy (BAM) images and higher degree of condensation in the surface pressure isotherms. The changes induced by blue irradiation on DPPC and DPPS monolayers were largely precluded when EGCG was incorporated, thus confirming its antioxidant capacity for both types of membrane.
Collapse
Affiliation(s)
- Filipa Pires
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Gonçalo Magalhães-Mota
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Paulo A Ribeiro
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Maria Raposo
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
16
|
Fanali C, Della Posta S, Vilmercati A, Dugo L, Russo M, Petitti T, Mondello L, de Gara L. Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils. Molecules 2018; 23:molecules23123249. [PMID: 30544789 PMCID: PMC6321326 DOI: 10.3390/molecules23123249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
The analysis of phenolic compounds in extra virgin olive oils was carried out by high-performance liquid chromatography utilizing photodiode array and mass spectrometry detectors. The chromatographic profile of thirty samples from four Italian Regions highlighted the presence of secoiridoids, phenolic alcohols, flavonoids, and phenolic acid classes. A similar qualitative profile was observed with some differences in peak area and fifteen compounds were tentatively identified. Quantitative analysis was performed by UV detection considering eight standard phenolic compounds. The chromatographic method, after optimization, was validated studying some parameters, e.g., intra-day and inter-day retention time precision, limit of detection, limit of quantification, and linearity. Recovery of the method was performed achieving good results (10 and 50 g·g-1 with recovery of 72.9⁻92.1% (w/w) and 79.1⁻102.8% (w/w), respectively). In all samples secoiridoids were the main compounds ranging from 85 to more than 99% (w/w) of the total concentration of detected phenolic compounds while phenolic acids accounted for the lowest percentage (0.1⁻0.6%, w/w). Finally, total concentration of phenolic compounds and antioxidant activity were determined with different chemical assays. A good and significant correlation among total phenolic compound concentration and antioxidant activity was observed. A significant different phenolic compound concentration and antioxidant activity was determined between samples from Puglia and Sicily. This was studied performing statistical analysis by one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test.
Collapse
Affiliation(s)
- Chiara Fanali
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Susanna Della Posta
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Alessandra Vilmercati
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Laura Dugo
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Marina Russo
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Tommasangelo Petitti
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Luigi Mondello
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
- Dipartimento di "Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali", University of Messina-Polo Annunziata, Viale Annunziata, 98168 Messina, Italy.
- Chromaleont S.r.L., c/o Dipartimento di "Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali", University of Messina-Polo Annunziata, Viale Annunziata, 98168 Messina, Italy.
| | - Laura de Gara
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| |
Collapse
|
17
|
Mu H, Sun J, Li L, Yin J, Hu N, Zhao W, Ding D, Yi L. Ionizing radiation exposure: hazards, prevention, and biomarker screening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15294-15306. [PMID: 29705904 DOI: 10.1007/s11356-018-2097-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Radiation is a form of energy derived from a source that is propagated through material in space. It consists of ionizing radiation or nonionizing radiation. Ionizing radiation is a feature of the environment and an important tool in medical treatment, but it can cause serious damage to organisms. A number of protective measures and standards of protection have been proposed to protect against radiation. There is also a need for biomarkers to rapidly assess individual doses of radiation, which can not only estimate the dose of radiation but also determine its effects on health. Proteomics, genomics, metabolomics, and lipidomics have been widely used in the search for such biomarkers. These topics are discussed in depth in this review.
Collapse
Affiliation(s)
- Hongxiang Mu
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jing Sun
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Linwei Li
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jie Yin
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|