1
|
Liu H, Feng X, Zhao Y, Lv G, Zhang C, Aruhan, Damba TA, Zhang N, Hao D, Li M. Pharmacophylogenetic relationships of genus Dracocephalum and its related genera based on multifaceted analysis. Front Pharmacol 2024; 15:1449426. [PMID: 39421668 PMCID: PMC11484080 DOI: 10.3389/fphar.2024.1449426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
The Lamiaceae genus Dracocephalum, with over 30 species, is believed to have considerable medicinal properties and is widely used in Eurasian ethnomedicine. Numerous studies have researched on the geographical distribution, metabolite identification, and bioactivity of Dracocephalum species, especially amidst debates concerning the taxonomy of its closely related genera Hyssopus and Lallemantia. These discussions present an opportunity for pharmacophylogenetic studies of these medicinal plants. In this review, we collated extensive literature and data to present a multifaceted view of the geographical distribution, phylogenetics, phytometabolites and chemodiversity, ethnopharmacological uses, and pharmacological activities of Dracocephalum, Hyssopus, and Lallemantia. We found that these genera were concentrated in Europe, with species adapted to various climatic zones. These genera shared close phylogenetic relationships, with Dracocephalum and Hyssopus displaying intertwined patterns in the phylogenetic tree. Our review assessed more than 900 metabolites from these three genera, with terpenoids and flavonoids being the most abundant. Researchers have recently identified novel metabolites within Dracocephalum, expanding our understanding of its chemical constituents. Ethnopharmacologically, these genera have been traditionally used for treating respiratory, liver and gall bladder diseases. Extracts and metabolites from these genera exhibit a range of pharmacological activities such as hepatoprotective, anti-inflammation, antimicrobial action, anti-hyperlipidaemia, and anti-tumour properties. By integrating phylogenetic analyses with network pharmacology, we explored the intrinsic links between metabolite profiles, traditional efficacy, and modern pharmacology of Dracocephalum and its related genera. This study contributes to the discovery of potential medicinal value from closely related species of Dracocephalum and aids in the development and sustainable use of medicinal plant resources.
Collapse
Affiliation(s)
- Haolin Liu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaowei Feng
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yulian Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Guoshuai Lv
- Central laboratory, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Aruhan
- Department of Mongolia Medicine Study, Institute of Traditional Medicine and Technology of Mongolia, Ulaanbaatar, Mongolia
| | - Tsend-Ayush Damba
- Department of Mongolia Medicine Study, Institute of Traditional Medicine and Technology of Mongolia, Ulaanbaatar, Mongolia
| | - Na Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Dacheng Hao
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Minhui Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
- Central laboratory, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Atazhanova G, Ishmuratova M, Levaya Y, Smagulov M, Lakomkina Y. The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1683. [PMID: 38931115 PMCID: PMC11207324 DOI: 10.3390/plants13121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
According to modern concepts, the genus Hyssopus L. includes seven plant species (Hyssopus ambiguus (Trautv.) Iljin ex Prochorov. & Lebel; Hyssopus cuspidatus Boriss; Hyssopus latilabiatus C.Y.Wu & H.W. Li; Hyssopus macranthus Boriss.; Hyssopus officinalis L.; Hyssopus seravschanicus (Dubj.) Pazij; Hyssopus subulifolius (Rech.f.) Rech.f.). The plants are rich in various groups of biologically active substances with a wide spectrum of pharmacological action. This review presents a modern comprehensive overview of the botanical research, extraction methods, chemical composition and pharmacological activity of plants of the genus Hyssopus L. As a result of the review, it was established that the chemical composition of plant extracts of the genus Hyssopus L. depends on various factors (place of growth, weather conditions, chemotypes, extraction methods, etc.). For the further use of the plants, the extraction methods and low-molecular metabolites isolated from them (mono- and sesquiterpenoids, flavonoids, alkaloids, etc.) are discussed. The data from the review provide an assessment of the relevance.
Collapse
Affiliation(s)
- Gayane Atazhanova
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| | - Margarita Ishmuratova
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
| | - Yana Levaya
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| | - Marlen Smagulov
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
| | - Yekaterina Lakomkina
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| |
Collapse
|
3
|
Monoterpenoid derivatives from Hyssopus cuspidatus Boriss. and their bioactivities. Fitoterapia 2023; 165:105432. [PMID: 36638847 DOI: 10.1016/j.fitote.2023.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Six undescribed monoterpenoids, together with twelve known compounds were isolated and identified from Hyssopus cuspidatus Boriss. Their structures were established by spectroscopic analysis, and the absolute configurations were established by ECD calculations and single-crystal X-ray diffraction crystallography. The isolated compounds were tested for their anti-inflammatory, antibacterial and antitumor activities. Most of the compounds showed potent anti-inflammatory activities. Among them, 3β-hydroxy-7,8-dihydro-β-ionone (8), oleanolic acid (17) and acetylpleamolic acid (18) showed strong anti-inflammatory activity against IL-6 and TNF-α in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Several compounds showed moderate inhibitory activities against Staphylococcus aureus, Candida albicans, and Escherichia coli. And (4S)-p-menth-l-ene-7,8-diol 8-O-β-D-glucopyranoside (16) showed antitumor activities against MCF-8 and HT-29 cell lines with IC50 values of 93.39 ± 3.69 and 71.89 ± 2.94 μM, respectively. Oleanolic acid (17) showed moderate antitumor activity against HT-29 cell lines with an IC50 value of 52.62 ± 1.63 μM. In this study, the discovery of anti-inflammatory, antibacterial and antitumor components from H. cuspidatus could benefit further development and utilization of this plant.
Collapse
|
4
|
Xie C, Gul A, Yu H, Huang X, Deng L, Pan Y, Ni S, Nurahmat M, Abduwaki M, Luo Q, Dong J. Integrated systems pharmacology and transcriptomics to dissect the mechanisms of Loki Zupa decoction in the treatment of murine allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115351. [PMID: 35533913 DOI: 10.1016/j.jep.2022.115351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/17/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loki zupa (LKZP) decoction, a traditional Uyghur medicine prescription, has been commonly used to treat numerous respiratory ailments in the Xinjiang region of western China, especially chronic airway inflammatory diseases such as allergic asthma. Due to its complex chemical composition, however, the mechanism of action of LKZP has yet to be fully elucidated. AIM OF THE STUDY Based on the balanced regulation theory of pro-inflammation and anti-inflammation, we tried to investigate the effectiveness of LKZP on asthma and its related protective mechanisms. MATERIALS AND METHODS In this study, an experimental model of asthma was established using ovalbumin (OVA) in BALB/c mice to assess the effects of LKZP. The potential mechanism of LKZP anti allergic asthma were researched by the combination of in silico systems pharmacology and in vivo transcriptomics. RESULTS Our data revealed that LKZP exerted a therapeutic effect against OVA-induced asthma by reducing airway hyperresponsiveness (AHR), peribronchial inflammation, and mucus hypersecretion. Meanwhile, LKZP downregulated the expression of OVA-induced IgE, interleukin (IL)-4, IL-5, IL-13, and tumor necrosis factor (TNF)-α and concurrently promoted the expression of interferon (IFN)-γ in serum and bronchoalveolar lavage fluid (BALF). Systems pharmacology analysis identified 10 core bioactive ingredients and 26 hub targets of LKZP against asthma. Transcriptomic analysis confirmed 246 differentially expressed genes (DEGs) after LKZP treatment. These were mainly expressed in cytokine-cytokine receptor interactions and immune and inflammatory response-related signaling pathways. Additionally, the real-time quantitative PCR (qPCR) results for the nine selected DEGs matched those of the RNA-seq analysis. Nuclear factor (NF)-κB and hypoxia-inducible factor (HIF)-1 signaling pathways were identified as candidate targets involved in the action of LKZP on allergic asthma, which was highly consistent with the findings in silico. By qPCR, Western blot, and immunohistochemical analysis, it was verified that LKZP treatment dramatically inhibited the activation of NF-κB p65 and HIF-1α stimulated by OVA in asthmatic mice. CONCLUSIONS Taken together, our experimental data revealed that LKZP could be a candidate for the treatment of allergic asthma via NF-κB and HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Cong Xie
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Yue Pan
- Institute of Integrative Medicine, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China.
| | - Shuangshuang Ni
- Sinopharm Xinjiang Pharmaceutical Co., Ltd., Urumqi, Xinjiang, China.
| | - Mammat Nurahmat
- College of Xinjiang Uyghur Medicine, Hotan, Xinjiang, China.
| | | | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Luo YM, Zhang RZ, Chen FY. Chemical constituents from the fruits of Vitex rotundifolia and their chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Natural Sources, Pharmacological Properties, and Health Benefits of Daucosterol: Versatility of Actions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Daucosterol is a saponin present in various natural sources, including medicinal plant families. This secondary metabolite is produced at different contents depending on species, extraction techniques, and plant parts used. Currently, daucosterol has been tested and explored for its various biological activities. The results reveal potential pharmacological properties such as antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, immunomodulatory, neuroprotective, and anticancer. Indeed, daucosterol possesses important anticancer effects in many signaling pathways, such as an increase in pro-apoptotic proteins Bax and Bcl2, a decrease in the Bcl-2/Bax ratio, upregulation of the phosphatase and tensin homolog (PTEN) gene, inhibition of the PI3K/Akt pathway, and distortion of cell-cycle progression and tumor cell evolution. Its neuroprotective effect is via decreased caspase-3 activation in neurons and during simulated reperfusion (OGD/R), increased IGF1 protein expression (decreasing the downregulation of p-AKT3 and p-GSK-3b4), and activation of the AKT5 signaling pathway. At the same time, daucosterol inhibits key glucose metabolism enzymes to keep blood sugar levels within normal ranges. Therefore, this review describes the principal research on the pharmacological activities of daucosterol and the mechanisms of action underlying some of these effects. Moreover, further investigation of pharmacodynamics, pharmacokinetics, and toxicology are suggested.
Collapse
|
7
|
Aihaiti K, Li J, Yaermaimaiti S, Yin Q, Aisa HA. A new macrocyclic spermidine alkaloid from the aerial part of Hyssopus cuspidatus Boriss. Nat Prod Res 2022:1-7. [PMID: 35045780 DOI: 10.1080/14786419.2022.2027935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hyssopus cuspidatus Boriss. grows in Xinjiang, China. A new macrocyclic spermidine alkaloid, namely hyssopusizine (1), along with sixteen known compounds were isolated and identified from the aerial parts of H. cuspidatus. Their structures were elucidated on the basis of spectroscopic data and comparison with the literature. Among them, fifteen compounds were isolated from H. cuspidatus for the first time. The absolute configuration of compound 1 was established by comparing the calculated and experimental ECD spectroscopic data. All isolated compounds were tested for their antioxidant and antimicrobial activities. Among them, compound 10 exhibited significant effects on ABTS free-radical scavenging activity with an IC50 value of 15.6 μM. Compounds 5-7 exhibited potent antioxidant activities against ABTS and DPPH. Most compounds exhibited moderate antimicrobial activities. Hyssopusizine (1) is the first macrocyclic spermidine alkaloid discovered from the Hyssopus genus.
Collapse
Affiliation(s)
- Kariyemu Aihaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Saimijiang Yaermaimaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Qiang Yin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
8
|
Network Pharmacology-Based Analysis of the Underlying Mechanism of Hyssopus cuspidatus Boriss. for Antiasthma: A Characteristic Medicinal Material in Xinjiang. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7671247. [PMID: 34880921 PMCID: PMC8648465 DOI: 10.1155/2021/7671247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Background Hyssopus cuspidatus Boriss. (Shen Xiang Cao (SXC)), a traditional medicine herb in Xinjiang, has a long history of being used by minorities to treat asthma. However, its active antiasthmatic compounds and underlying mechanism of action are still unknown. The aim of this study was to investigate the bioactive compounds and explore the molecular mechanism of SCX in the treatment of asthma using network pharmacology. Methods The compounds of SCX were collected by a literature search, and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction were used to predict targets and screen active compounds. Moreover, asthma-related targets were obtained based on DisGeNET, Herb, and GeneCards databases, and a protein-protein interaction (PPI) network was built by the STRING database. Furthermore, the topological analysis of the PPI and SXC-compound-target networks were analyzed and established by Cytoscape software. Finally, the RStudio software package was used for carrying out Gene Ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. AutoDock tools and AutoDock Vina were used to molecularly dock the active compounds and key targets. Results A total of 8 active compounds and 258 potential targets related to SXC were predicted, and PPI network screened out key targets, including IL-6, JUN, TNF, IL10, and CXCL8. GO enrichment analysis involved cell responses to reactive oxygen species, oxidative stress, chemical stress, etc. In addition, KEGG pathway analysis showed that SXC effectively treated asthma through regulation of mitogen-activated protein kinases (MAPK) signaling pathways, interleukin 17 (IL-17) signaling pathways, toll-like receptor (TLR) signaling pathways, and tumor necrosis factor (TNF) signaling pathways. Conclusion The preliminary study that was based on multiple compounds, multiple targets, and multiple pathways provides a scientific basis for further elucidating the molecules involved and the underlying antiasthma-related mechanisms of SXC.
Collapse
|
9
|
Aihaiti K, Li J, Yaermaimaiti S, Liu L, Xin X, Aisa HA. Non-volatile compounds of Hyssopus cuspidatus Boriss and their antioxidant and antimicrobial activities. Food Chem 2021; 374:131638. [PMID: 34839965 DOI: 10.1016/j.foodchem.2021.131638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/04/2022]
Abstract
Hyssopus cuspidatus is a famous spice and an aromatic vegetable. Few information could be available concerning its non-volatile chemical composition and bioactivities. Preliminary bioactive evaluations on the crude ethanol extract and its four fractions disclosed that the ethyl acetate fraction (EAF) exhibited antioxidant and antimicrobial bioactivities. LC-MS/MS analysis of EAF helped to identify sixty-four compounds, and phenolic compounds were the dominant components. Systematic separation and purification of EAF led to the isolation of thirty-four compounds. Six compounds were identified to be new and eighteen compounds were discovered from H. cuspidatus for the first time. Rosmarinic acid, methyl rosmarinate, butyl rosmarinate and salvigenin were the major components of EAF and their contents were determined. Most of isolated compounds exhibited significant or moderate antioxidant and antimicrobial activities. This research supported the edible application of H. cuspidatus and disclosed the potency of it as a natural antioxidant and antimicrobial food additive.
Collapse
Affiliation(s)
- Kariyemu Aihaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Saimijiang Yaermaimaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China.
| |
Collapse
|
10
|
Discovery of Phenolic Glycoside from Hyssopus cuspidatus Attenuates LPS-Induced Inflammatory Responses by Inhibition of iNOS and COX-2 Expression through Suppression of NF-κB Activation. Int J Mol Sci 2021; 22:ijms222212128. [PMID: 34830006 PMCID: PMC8623068 DOI: 10.3390/ijms222212128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
It seems quite necessary to obtain effective substances from natural products against inflammatory response (IR) as there are presently clinical problems regarding accompanying side effects and lowered quality of life. This work aimed to investigate the abilities of hyssopuside (HY), a novel phenolic glycoside isolated from Hyssopus cuspidatus (H. cuspidatus), against IR in lipopolysaccharide (LPS)-induced RAW 264.7 cells and mouse peritoneal macrophages. The results indicated that HY could reduce nitric oxide (NO) production and inhibit the production and secretion of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-stimulated macrophages. Moreover, data from the immunofluorescence study showed that HY suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. The Western blot results suggested that HY reversed the LPS-induced degradation of IκB (inhibitor of NF-κB), which is normally required for the activation of NF-κB. Meanwhile, the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) diminished significantly with the presence of HY in response to LPS stimulation. On the other hand, HY had a negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Moreover, an in silico study of HY against four essential proteins/enzymes revealed that COX-2 was the most efficient enzyme for the interaction, and binding of residues Phe179, Asn351, and Ser424 with HY played crucial roles in the observed activity. The structure analysis indicated the typical characterizations with phenylethanoid glycoside contributed to the anti-inflammatory effects of HY. These results indicated that HY manipulated its anti-inflammatory effects mainly through blocking the NF-κB signal transduction pathways. Collectively, we believe that HY could be a potential alternative phenolic agent for alleviating excessive inflammation in many inflammation-associated diseases.
Collapse
|
11
|
Wang W, Zhu Y, Jiang L, Mei L, Tao Y, Liu Z. Enrichment and separation of high-polar compounds from Saussurea obvallata using solid-phase extraction combining with offline two-dimensional liquid chromatography. J Sep Sci 2021; 44:3967-3975. [PMID: 34469074 DOI: 10.1002/jssc.202100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/12/2022]
Abstract
The high-polar compounds from natural products are often used as medicines due to their good bioactivities. However, owing to the complexity and diversity of their structure, the separation of high-polar compounds is still a challenging work. For this, an efficient method for enrichment and separation of the high-polar compounds from Saussurea obvallata was developed. First, the target compounds were enriched from the total extract using a solid-phase extraction method. An offline two-dimensional liquid chromatography method was used for the separation of pure compounds from the enriched sample. After optimization of chromatographic conditions, high separation selectivity of target compounds was obtained on a polar-modified C18 column and a HILIC XAmide column. Hence, a two-dimensional reversed-phase × hydrophilic interaction liquid chromatography system was constructed and enlarged from the analytical level to the preparative level. In the first dimension, four fractions were obtained on the XCharge C18 column with a recovery rate of 71.2%. In the second-dimension preparation on the XAmide column, eight high-polar compounds with more than 96% purity were isolated. All compounds were isolated from Saussurea obvallata for the first time. The results demonstrated that this developed strategy is effective for preparative-scale isolation of high-polar compounds from natural products.
Collapse
Affiliation(s)
- Weidong Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, P. R. China.,University of Chinese Academy of Science, Beijing, P. R. China
| | - Yunhe Zhu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, P. R. China.,University of Chinese Academy of Science, Beijing, P. R. China
| | - Lei Jiang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, P. R. China
| | - Lijuan Mei
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, P. R. China
| | - Yanduo Tao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, P. R. China
| | - Zenggen Liu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, P. R. China
| |
Collapse
|
12
|
Shu P, Yu M, Zhu H, Luo Y, Li Y, Li N, Zhang H, Zhang J, Liu G, Wei X, Yi W. Two new iridoid glycosides from Gardeniae Fructus. Carbohydr Res 2021; 501:108259. [PMID: 33610932 DOI: 10.1016/j.carres.2021.108259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Two new iridoid glycosides, genipin 1,10-di-O-α-l-rhamnoside (1) and genipin 1,10-di-O-β-d-xylopyranoside (2), along with thirteen known compounds (3-15) were isolated from Gardeniae Fructus. Their structures were elucidated by physical data analyses such as NMR, UV, IR, HR-ESI-MS, as well as chemical hydrolysis. All compounds were tested for their tyrosinase inhibitory and antioxidant activities. At a concentration of 25 μM, compound 13 showed obvious mushroom tyrosinase inhibition activity with % inhibition value of 36.52 ± 1.98%, with kojic acid used as the positive control (46.09 ± 1.29%). At a concentration of 1 mM, compounds 8 and 9 exhibited considerable DPPH radical scavenging activities, with radical scavenging rates of 48.54 ± 0.47%, 58.59 ± 0.39%, respectively, with l-ascorbic acid used as the positive control (59.02 ± 0.77%).
Collapse
Affiliation(s)
- Penghua Shu
- Food and Pharmacy College, Xuchang University, Xuchang, China.
| | - Mengzhu Yu
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Huiqing Zhu
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Yuehui Luo
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Yamin Li
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Nianci Li
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Hui Zhang
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Jialong Zhang
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Guangwei Liu
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Xialan Wei
- School of Information Engineering, Xuchang University, Xuchang, China
| | - Wenhan Yi
- Communist Youth League Committee, Xuchang University, Xuchang, China.
| |
Collapse
|
13
|
|
14
|
Mohammadtursun N, Li Q, Abuduwaki M, Jiang S, Zhang H, Sun J, Dong J. Loki zupa alleviates inflammatory and fibrotic responses in cigarette smoke induced rat model of chronic obstructive pulmonary disease. Chin Med 2020; 15:92. [PMID: 32874197 PMCID: PMC7457355 DOI: 10.1186/s13020-020-00373-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Loki zupa formula is kind of a traditional medicines which used to treat airway diseases, especially those caused by abnormal phlegm, such as cough, asthma and chronic bronchitis. The study aim was to explore the anti-inflammatory and anti-remodeling effects of Loki zupa by using a cigarette-smoke induced rat model of chronic obstructive pulmonary disease. Methods The rats were divided into five groups: the normal group, the model group, the LZ 4 g/kg and LZ8g/kg group, and the positive control group. Rats were exposed to cigarette smoke for 24 weeks to induce a COPD rat model. Lung function was assessed. Histopathological changes were recorded using Haematoxylin–eosin and Masson’s trichrome staining. Mucus hypersecretion was evaluated by PAS staining. Inflammatory factors were measured in blood serum and bronchial alveolar lavage fluid using an enzyme-linked immunosorbent assay. Malondialdehyde and superoxide dismutase and glutathione S-transferase levels were tested by biochemical methods. Gene expression patterns were evaluated using GN-GeneChip Clariom S Array for rat from Affymetrix. And top upregulated and downregulated genes validated by qPCR. And these genes was also compared with gene transcriptomic data from smoker patients with emphysema and non-smokers in GEO dataset. IL-6/PLAGA2A signalling protein expression was assessed by western blot and immunohistochemistry. TGF-β1and smad2/3 signalling expressions were analysed by western Blot. Results Loki zupa improved COPD rats lung function as compared to the model group and pathological changes including inflammatory cell infiltration and goblet cell metaplasia was alleviated in rats treated with Loki zupa Inflammatory factors IL-6, TNF-α, IL-1β and TGF-β1 decreased while significant increase was observed in blood serum IL-10 content in rats treated with Loki zupa. And IL-6 and TNF-α level in bronchial alveolar lavage fluid showed same expression trend in blood serum, while there was no change in MMP-9 content. It also increased antioxidant enzyme SOD and GPX activity while reducing the lipid peroxidation. Gene microarray analysis showed that there were 355 differentially expressed gene in LZ treated COPD rat lung as compared to model group. Both microarray and qPCR results showed that top differentially expressed genes nxt1 (up regulated) and pla2g2a (down regulated) expression were also reversed by LZ treatment. And protein expression level of IL-6 and pla2g2a was also elevated in CS exposed rats while significant reduction was observed in LZ treated rats. Accordingly, Loki zupa inhibited Collagen-1 upstream protein expression of TGF-β/smad2/3 signalling pathway. Conclusion These results demonstrated that Loki zupa showed protective effects in the lung of the COPD rat model. This mainly because of Loki zupa exerts anti-inflammatory effects by blocking IL-6/pla2g2a signalling and inhibiting inflammatory gene expression and attenuates fibrotic responses by inhibiting TGF-β/smad2/3 signalling pathway.
Collapse
Affiliation(s)
- Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China.,College of Xinjiang Uyghur Medicine, Hotan, China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | | | - Shan Jiang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Hu Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
15
|
Zhao L, Ji Z, Li K, Wang B, Zeng Y, Tian S. HPLC-DAD analysis of Hyssopus Cuspidatus Boriss extract and mensuration of its antioxygenation property. BMC Complement Med Ther 2020; 20:228. [PMID: 32689984 PMCID: PMC7370466 DOI: 10.1186/s12906-020-03016-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hyssopus cuspidatus Boriss has been used as an important ethnomedicinal plant for long to eliminate phlegm, relieve cough and as well as having antibacterial, antioxygenation, and antitumor activities. In this study, the polyphenol contents, flavonoid contents, free radical scavenging assay and animal antioxygenation property assay of ethanol extract of H. cuspidatus were measured. METHODS This study determined the total polyphenol and flavonoid contents in H. cuspidatus by UV-VIS. Caffeic, ferulic, and rosmarinic acids were measured using HPLC-DAD. Free radical scavenging assay of H. cuspidatus was studied by colorimetric method. Animal antioxygenation property assay of H. cuspidatus was studied with mice by biochemical assay kits. RESULTS The total polyphenol and flavonoid contents of H. cuspidatus in 2017, 2018, 2019 were determined and the contents of H. cuspidatus in 2019 was the highest. In addition, rosmarinic acid was the phenolic acid with the highest content in H. cuspidatus. Compared with those of DPPH free radical, hydroxyl free radical, and superoxide anion free radical, the scavenging ability of H. cuspidatus of ABTS free radical was stronger, the average IC50 value was 0.0245 mg/mL. In animal antioxygenation property experiment, the model group was successfully established with decreased activities of SOD, CAT, and GSH-px and increased content of MDA. The ethanol extract of H. cuspidatus increased the activities of SOD, CAT, and GSH-px and reduced the content of MDA. Each group of samples and the ascorbic acid positive control group showed significant differences in the results of free radical scavenging and animal antioxygenation property experiments (P < 0.05). CONCLUSIONS These results suggest that H. cuspidatus exerts an antioxygenation property, which can be attributed to the contents of total polyphenol and flavonoid. Given its strong antioxygenation property, H. cuspidatus can be used as a new natural antioxidant in food preservation and disease treatment.
Collapse
Affiliation(s)
- Lu Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011 Xinjiang China
| | - Zhihong Ji
- Xinjiang Qimu Medical Research Institute, Urumqi, 830002 Xinjiang China
| | - Keao Li
- Xinjiang Qimu Medical Research Institute, Urumqi, 830002 Xinjiang China
| | - Bo Wang
- Experimental Animal Center, Xinjiang Medical University, Urumqi, 830011 Xinjiang China
| | - Ya Zeng
- College of TCM, Xinjiang Medical University, Urumqi, China
| | - Shuge Tian
- College of TCM, Xinjiang Medical University, Urumqi, China
| |
Collapse
|