1
|
Li JJ, Li L, Su SS, Liao ML, Gong QZ, Liu M, Jiang S, Zhang ZQ, Zhou H, Liu JX. Anti-inflammatory properties and characterization of water extracts obtained from Callicarpa kwangtungensis Chun using in vitro and in vivo rat models. Sci Rep 2024; 14:11047. [PMID: 38744989 PMCID: PMC11094131 DOI: 10.1038/s41598-024-61892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Callicarpa kwangtungensis Chun (CK) is a common remedy exhibits anti-inflammatory properties and has been used in Chinese herbal formulations, such as KangGongYan tablets. It is the main component of KangGongYan tablets, which has been used to treat chronic cervicitis caused by damp heat, red and white bands, cervical erosion, and bleeding. However, the anti-inflammatory effects of CK water extract remains unknown. This study assessed the anti-inflammatory effects of CK in vivo and in vitro, characterized its main components in the serum of rats and verified the anti-inflammatory effects of serum containing CK. Nitric oxide (NO), tumour necrosis factor α (TNF-α) and interleukin-6 (IL-6) release by RAW264.7 cells was examined by ELISA and Griess reagents. Inflammation-related protein expression in LPS-stimulated RAW264.7 cells was measured by western blotting. Furthermore, rat model of foot swelling induced by λ-carrageenan and a collagen-induced arthritis (CIA) rat model were used to explore the anti-inflammatory effects of CK. The components of CK were characterized by LC-MS, and the effects of CK-containing serum on proinflammatory factors levels and the expression of inflammation-related proteins were examined by ELISA, Griess reagents and Western blotting. CK suppressed IL-6, TNF-α, and NO production, and iNOS protein expression in LPS-stimulated RAW264.7 cells. Mechanistic studies showed that CK inhibited the phosphorylation of ERK, P38 and JNK in the MAPK signaling pathway, promoted the expression of IκBα in the NF-κB signaling pathway, and subsequently inhibited the expression of iNOS, thereby exerting anti-inflammatory effects. Moreover, CK reduced the swelling rates with λ-carrageenan induced foot swelling, and reduced the arthritis score and incidence in the collagen-induced arthritis (CIA) rat model. A total of 68 compounds in CK water extract and 31 components in rat serum after intragastric administration of CK were characterized. Serum pharmacological analysis showed that CK-containing serum suppressed iNOS protein expression and NO, TNF-α, and IL-6 release. CK may be an anti-inflammatory agent with therapeutic potential for acute and chronic inflammatory diseases, especially inflammatory diseases associated with MAPK activation.
Collapse
Affiliation(s)
- Jun-Jian Li
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Li
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Shan-Shan Su
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Mei-Lan Liao
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Qiu-Zi Gong
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Mei Liu
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Shan Jiang
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Zai-Qi Zhang
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Second Affiliated Hospital of Gzangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China.
| |
Collapse
|
2
|
Wang LX, Wang HL, Huang J, Chu TZ, Peng C, Zhang H, Chen HL, Xiong YA, Tan YZ. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. PHYTOCHEMISTRY 2022; 202:113326. [PMID: 35842031 DOI: 10.1016/j.phytochem.2022.113326] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Lignans, with various biological activities, such as antitumor, antioxidant, antibacterial, and antiviral activities, are widely distributed in nature and mainly exist in the xylem of plants. In this paper, we summarized the structures and bioactivities of lignans reported in recent years (2019-2021) from five parts, including (1) a summary and classification of newly reported compounds; (2) the pharmacological activities of lignans; (3) molecular resources and activity distribution; (4) the structure-activity relationships; and (5) the clinical application of lignans. This review covers all undescribed compounds that were reported within the covered period of time and all bioactivity data about previously isolated lignans. The distribution of lignans in different plants and families is visualized, which improves the efficiency of searching for specific molecules. The diverse activities of different types of lignans provide an important reference for the rapid screening of these compounds. Discussion about the structure-activity relationships of lignans provides a direction for the structural modification of skeleton molecules. Combined with the clinical application of such molecules, this work will provide a valuable reference for pharmaceutical chemists.
Collapse
Affiliation(s)
- Li-Xia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Huang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tian-Zhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hu-Lan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong-Ai Xiong
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Yu ZX, Wang CH, Nong XH, Chen DL, Xu ML, Li XB, Liu YY, Chen GY. Callnudoids A-H: Highly modified labdane diterpenoids with anti-inflammation from the leaves of Callicarpa nudiflora. PHYTOCHEMISTRY 2022; 201:113253. [PMID: 35644486 DOI: 10.1016/j.phytochem.2022.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Eight undescribed 3,4-seco-norlabdane diterpenoids, callnudoids A-H, as well as two known analogues were isolated from the leaves of Callicarpa nudiflora. The structures were elucidated using spectroscopic methods and were compared with published NMR spectroscopic data. The absolute configurations of callnudoids D and E were defined based on ECD data or single-crystal X-ray diffraction. Callnudoids A-C are the highly modified labdane diterpenoids featuring rearranged 3,4-seco-ring and the formation of an undescribed cyclohexene moiety via C2-C18 cyclization. They only contain 15 carbon atoms on the carbon skeleton. Callnudoid D represents the unusual 3,4-seco-15,16-norlabdane diterpenoid with C13-C17 cyclization, and a putative biosynthesis pathway for callnudoids A, B, D, and E was proposed. All compounds were evaluated for their anti-inflammatory activities by inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) released in RAW264.7 cells; callnudoids A-E and H, and methylcallicarpate obviously inhibited pro-inflammatory cytokines TNF-α and IL-1β in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhang-Xin Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Can-Hong Wang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - De-Li Chen
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Meng-Ling Xu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Xiao-Bao Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Yang-Yang Liu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
4
|
Feng S, Wang L, Deng L, Zhang M, Ma W, Liang X, Xie H, Yi B. Systematic characterisation of the effective components of five Callicarpa species with UPLC-Q-TOF-MS and evaluation of their anti-hyperuricaemic activity. Nat Prod Res 2022; 37:1662-1667. [PMID: 35875993 DOI: 10.1080/14786419.2022.2102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Callicarpa kwangtungensis (C. Kw), C. macrophylla (C. Ma), C. nudiflora (C. Nu), C. formosana (C. Fo), and C. kochiana (C. Ko) were medicinal plant resource in China. In this study, the UPLC/Q-TOF-MS analysis was performed and 151 compounds were identified. PCA analysis metabolic profiles of C. Nu, C. Ko and C. Kw leaves differ significantly from the other two Callicarpa species, while C. Fo and C. Ma share similar chemical constituents. OPLS-DA highlight with an S-plot indicated that there are 14 robust known chemical markers enabling the differentiation between these five Callicarpa plants. C. Ma, C. Nu, and C. Fo leaves extracts treatment effectively reversed the body weight loss, uric acid and creatinine content, hepatic XOD activity, kidney, liver, and ankle tissues injury and inflammation induced by potassium oxonate in hyperuricemia mice. While Ko and C. Kw leaves extracts treatment showed less improvement in hyperuricemia mice.
Collapse
Affiliation(s)
- Shixiu Feng
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Key Laboratory of South Subtropical Plant Diversity, Shenzhen, China
| | - Luolin Wang
- Department of gastroenterology, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li Deng
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Key Laboratory of South Subtropical Plant Diversity, Shenzhen, China
| | - Min Zhang
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Key Laboratory of South Subtropical Plant Diversity, Shenzhen, China
| | - Wenyu Ma
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Key Laboratory of South Subtropical Plant Diversity, Shenzhen, China
| | - Xiangping Liang
- College of life sciences, Qinghai Normal University, Xining, China
| | - Huichun Xie
- College of life sciences, Qinghai Normal University, Xining, China
| | - Bo Yi
- Department of Pharmacy, the 928th Hospital of PLA Joint Logistics Support Force, Haikou, China
| |
Collapse
|
5
|
Yang L, Zhai Y, Chen X, Zhang Z, Gong X, Zhou D, Kong J, Zhang W, Zhang Q, Niu C, Wang Z, Sun Z. Rapid identification of chemical compositions in callicarpa kwangtungensis Chun by ultra-high-performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry. J Sep Sci 2020; 43:2487-2494. [PMID: 32294314 DOI: 10.1002/jssc.202000165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 01/26/2023]
Abstract
Callicarpa kwangtungensis Chun is a traditional Chinese medicine that has various therapeutic effects. Despite its wide use in Chinese medicine, the study is still quite limited, especially its chemical compositions. In this research, an ultra-high-pressure liquid chromatography coupled with Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry tandem mass spectrometry method was utilized to analyze its chemical compositions for the first time. As a result, a total of 124 compounds, including 20 phenylethanoid glycosides, 31 flavonoids, 36 organic acids, 26 terpenoids and 11 phenols, were identified or tentatively characterized in 30 min. Among them, 49 compounds, including 5 phenylethanoid glycosides, 12 flavonoids, 16 organic acids, 12 terpenoids, and 4 phenols, were identified in Callicarpa kwangtungensis Chun for the first time. Besides, the fragmentation pathways were also discussed. This research established a rapid and reliable method to analyze the chemical compositions of complicated herb without the process of isolation, and provide abundant information on the chemical material basis for further bioactivity and quality control studies.
Collapse
Affiliation(s)
- Lanping Yang
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Yangyang Zhai
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Xingying Chen
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Zhenzhen Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Xueyun Gong
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Dejun Zhou
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Jichuan Kong
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Wenkui Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Qingling Zhang
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Chao Niu
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Zhenhui Wang
- College of Medicine, Henan Polytechnic University, Jiaozuo, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|