1
|
Pabuprapap W, Chaichompoo W, Chulrik W, Chunglok W, Thothaisong T, Denlumpai P, Namdaung U, Suksamrarn A. Potent nitric oxide inhibitory sesquiterpenoids from the rhizome of Curcuma aromatica Salisb. Nat Prod Res 2024; 38:1739-1747. [PMID: 37317836 DOI: 10.1080/14786419.2023.2222219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
One new sesquiterpenoid, curcaromatin (1), together with twenty-one known compounds 2-22, were isolated from the rhizomes of Curcuma aromatica Salisb. (Zingiberaceae). Their structures were established by extensive spectroscopic (1D and 2D NMR and HR-MS) analysis. Most of the isolated compounds were investigated for nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW264.7 cells. (-)-Xanthorrhizol (3) displayed the strongest NO inhibitory activity with an IC50 value of 4.3 μM, which was 3.7-fold more active than the reference compound, aminoguanidine (IC50 15.9 μM). The selectivity index (SI > 28.1) of compound 3 was almost 3-fold higher than that of aminoguanidine.
Collapse
Affiliation(s)
- Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Teerawut Thothaisong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Panida Denlumpai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Umalee Namdaung
- Herbal and Cannabis Science Program, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| |
Collapse
|
2
|
Amil MA, Rahman SNSA, Yap LF, Razak FA, Bakri MM, Salem LSO, Lim XY, Reduan NA, Sim KS. Antimicrobial and Antiproliferative Effects of Zingiberaceae Oils: A Natural Solution for Oral Health. Chem Biodivers 2024; 21:e202301836. [PMID: 38253795 DOI: 10.1002/cbdv.202301836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Essential oils have been recognised for their potential benefits in oral care. The aim of this study was to evaluate the antibacterial and antiproliferative activity of essential oils derived from four Zingiberaceae species. A combination of GC/MS and GC-FID was employed to analyse these essential oils. The results showed that β-myrcene (79.77 %) followed by ethyl-cinnamate (40.14 %), β-curcumene (34.90 %), and alloaromadendrene (25.15 %) as the primary constituents of Curcuma mangga, Curcuma xanthorrhiza, Kaempferia galanga and Curcuma aeruginosa, respectively. The Zingiberaceae oils were tested for their antibacterial activity against oral bacteria using the disc diffusion test. Curcuma xanthorrhiza oil showed the largest inhibition zones against Streptococcus mitis (19.50±2.22 mm) and Streptococcus sanguinis (15.04±3.05 mm). Similarly, Curcuma mangga oil exhibited significant antibacterial activity against Streptococcus mutans (12.55±0.45 mm) and mixed oral bacteria (15.03±3.82 mm). Furthermore, the MTT viability assay revealed moderate inhibitory activity of these essential oils against H103 and ORL-204 oral cancer cells. The study findings demonstrate that Curcuma xanthorrhiza and Curcuma mangga essential oils have potent antibacterial properties, suggesting their potential use as natural alternatives to synthetic antibacterial agents in oral care products. However, further investigations are necessary to fully explore their therapeutic applications.
Collapse
Affiliation(s)
- Muhammad Amirul Amil
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathilah Abdul Razak
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, Universitas Padjadjaran, 40132, Kota Bandung, Indonesia
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lamis S O Salem
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xiu Yi Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Athirah Reduan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Pandey AK, Sanches Silva A, Chávez-González ML, Singh P. Recent advances in delivering free or nanoencapsulated Curcuma by-products as antimicrobial food additives. Crit Rev Biotechnol 2023; 43:1257-1283. [PMID: 36130809 DOI: 10.1080/07388551.2022.2110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Food commodities are often contaminated by microbial pathogens in transit or during storage. Hence, mitigation of these pathogens is necessary to ensure the safety of food commodities. Globally, researchers used botanicals as natural additives to preserve food commodities from bio-deterioration, and advances were made to meet users' acceptance in this domain, as synthetic preservatives are associated with harmful effects to both consumers and environments. Over the last century, the genus Curcuma has been used in traditional medicine, and its crude and nanoencapsulated essential oils (EOs) and curcuminoids were used to combat harmful pathogens that deteriorate stored foods. Today, more research is needed for solving the problem of pathogen resistance in food commodities and to meet consumer demands. Therefore, Curcuma-based botanicals may provide a source of natural preservatives for food commodities that satisfy the needs both of the food industry and the consumers. Hence, this article discusses the antimicrobial and antioxidant properties of EOs and curcuminoids derived from the genus Curcuma. Further, the action modes of Curcuma-based botanicals are explained, and the latest advances in nanoencapsulation of these compounds in food systems are discussed alongside knowledge gaps and safety assessment where the focus of future research should be placed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Mónica L Chávez-González
- Food Research Departments, School of Chemistry, Autonomous University of Coahuila, Saltillo, México
| | - Pooja Singh
- Bacteriology and Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur, India
| |
Collapse
|
4
|
Soumya T, Lakshmipriya T, Klika KD, Jayasree PR, Manish Kumar PR. Anticancer potential of rhizome extract and a labdane diterpenoid from Curcuma mutabilis plant endemic to Western Ghats of India. Sci Rep 2021; 11:552. [PMID: 33436696 PMCID: PMC7803788 DOI: 10.1038/s41598-020-79414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Zingiberaceae plants are well known for their use in ethnomedicine. Curcuma mutabilis Škorničk., M. Sabu & Prasanthk., is an endemic Zingiberaceae species from Western Ghats of Kerala, India. Here, we report for the first time, the anticancer potential of petroleum ether extract from C. mutabilis rhizome (CMRP) and a novel labdane diterpenoid, (E)-14, 15-epoxylabda-8(17), 12-dien-16-al (Cm epoxide) isolated from it. CMRP was found to be a mixture of potent bioactive compounds including Cm epoxide. Both the extract and the compound displayed superior antiproliferative activity against several human cancer cell lines, without any display of cytotoxicity towards normal human cells such as peripheral blood derived lymphocytes and erythrocytes. CMRP treatment resulted in phosphatidylserine externalization, increase in the levels of intracellular ROS, Ca2+, loss of mitochondrial membrane potential as well as fragmentation of genomic DNA. Analyses of transcript profiling and immunostained western blots of extract-treated cancer cells confirmed induction of apoptosis by both intrinsic and extrinsic pathways. The purified compound, Cm epoxide, was also found to induce apoptosis in many human cancer cell types tested. Both CMRP and the Cm epoxide were found to be pharmacologically safe in terms of acute toxicity assessment using Swiss albino mice model. Further, molecular docking interactions of Cm epoxide with selected proteins involved in cell survival and death were also indicative of its druggability. Overall, our findings reveal that the endemic C. mutabilis rhizome extract and the compound Cm epoxide isolated from it are potential candidates for development of future cancer chemotherapeutics.
Collapse
Affiliation(s)
- T Soumya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - T Lakshmipriya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Malappuram, 673635, Kerala, India
| | - P R Manish Kumar
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India.
| |
Collapse
|
5
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
6
|
Al-Amin M, Eltayeb NM, Khairuddean M, Salhimi SM. Bioactive chemical constituents from Curcuma caesia Roxb. rhizomes and inhibitory effect of curcuzederone on the migration of triple-negative breast cancer cell line MDA-MB-231. Nat Prod Res 2019; 35:3166-3170. [PMID: 31726856 DOI: 10.1080/14786419.2019.1690489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rhizomes of Curcuma caesia are traditionally used to treat cancer in India. The aim is to isolate chemical constituents from C. caesia rhizomes through bioassay-guided fractionation. The extract, hexanes and chloroform fractions showed effect on MCF-7 and MDA-MB-231cells in cell viability assay. The chromatographic separation afforded germacrone (1), zerumbone (2), furanodienone (3), curzerenone (4), curcumenol (5), zederone (6), curcumenone (7), dehydrocurdione (8) from hexanes fraction and curcuminol G (9), curcuzederone (10), (1S, 10S), (4S,5S)-germacrone-1 (10), 4-diepoxide (11), wenyujinin B (12), alismoxide (13), aerugidiol (14), zedoarolide B (15), zedoalactone B (16), zedoarondiol (17), isozedoarondiol (18) from chloroform fraction. This is first report of compounds 2, 9-13, 15-18 from C. caesia. The study demonstrated compounds 1-4 and 10 are the bioactive compounds. The effect of curcuzederone (10) on MDA-MB-231 cell migration showed significant inhibition in scratch and Transwell migration assays. The results revealed that curcuzederone could be a promising drug to treat cancer.
Collapse
Affiliation(s)
- Mohammad Al-Amin
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nagla Mustafa Eltayeb
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.,Tropical Medicine Research Institute (TMRI), National Centre for Research (NCR), Khartoum, Sudan
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Salizawati Muhamad Salhimi
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
7
|
Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma Caesia extracts for bioactive metabolite composition, antioxidant and antimicrobial potential. Nat Prod Res 2019; 35:3131-3135. [PMID: 31691594 DOI: 10.1080/14786419.2019.1687472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study was to compare the antioxidant and antibacterial activity of Curcuma caesia rhizome extracts and to characterise its bioactive metabolites by Fourier Transform-Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectroscopy (GC-MS). Extracts were prepared using methanol, acetone and ethyl acetate by cold percolation methods. Compared to other extracts, methanol extract discovered to have the greatest antioxidant capacity. Analysis of FTIR spectra of all the extracts of Curcuma caesia shows the existence of several functional groups such as phenol, aldehydes and carboxylic group. But in methanol extract C≡C stretching bond, nitro compound and conjugated aldehyde were also presented. GC-MS extract assessment showed that sesquiterpene and monoterpenes were primarily presented. This research provides an efficient basis for separating the innovative bioactive compound from plant and assessing their effectiveness for antioxidant and antibacterial operations in particular.[Figure: see text].
Collapse
Affiliation(s)
- Monika Chaturvedi
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Reena Rani
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Dushyant Sharma
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jaya Parkash Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|