1
|
Bedoui A, Mufti A, Feriani A, Baccari H, Bouallegue A, Kharrat M, Sobeh M, Amri M, Abbes Z. Unlocking the hepatoprotective potential of the parasitic plant Orobanche foetida Poir. aqueous extract against CCl 4-induced liver injury in rat. Front Pharmacol 2024; 14:1320062. [PMID: 38239200 PMCID: PMC10794580 DOI: 10.3389/fphar.2023.1320062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
In this current study, we explored the preventive capacity of the aqueous extract of Orobanche foetida (OF), a root holoparasite, against CCl4 prompt hepatotoxicity in rats. LC-MS/MS profiling revealed the existence of 32 compounds belonging to organic acids, benzoic acid derivatives, and hydroxycinnamic acids along with their glycosides and derivatives as well as several flavonoids. In vitro, OF demonstrated substantial antioxidant potential at DPPH and ABTS assays. Results showed that the pretreatment with OF for 6 weeks at the doses (25 mg/kg bw) and (50 mg/kg bw) countered the CCl4-induced liver injury by restoring liver injuries indicators (ALT, AST, LDH, ALP, GGT and bilirubin), normalizing lipid profile (TC, TG, LDL-C, and HDL-C), as well as, impeding DNA fragmentation. Furthermore, OF blocked the hepatic oxidative stress spurred by CCl4 administration through boosting antioxidant enzymes (GSH, CAT, and SOD) responsible of diminishing lipid peroxidation. exhibited an anti-inflammatory effect by downregulating TNF-α and IL-6 levels. OF suppressive effect on proinflammatory cytokines is further exerted by its capacity to modulate the expression of the NF-κB gene. In silico investigation revealed that among the 32 identified compounds, vanillic acid glucoside and dihydroxybenzoic acid glucoside have strong and stable bindings with the active sites of three key inflammatory proteins (PARP-1, TNF-α, IL-6), which could highlight the antioxidant and anti-inflammatory capacity of. Overall, this research provides a preliminary pharmacological support for the medicinal applications of Orobanche foetida for addressing inflammatory and hepato-pathological conditions.
Collapse
Affiliation(s)
- Arij Bedoui
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Hanene Baccari
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Amal Bouallegue
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Mohamed Kharrat
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Mansour Sobeh
- AgroBioSciences Program, College for Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Moez Amri
- AgroBioSciences Program, College for Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zouhaier Abbes
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| |
Collapse
|
2
|
Malfa GA, Pappalardo F, Miceli N, Taviano MF, Ronsisvalle S, Tomasello B, Bianchi S, Davì F, Spadaro V, Acquaviva R. Chemical, Antioxidant and Biological Studies of Brassica incana subsp. raimondoi (Brassicaceae) Leaf Extract. Molecules 2023; 28:1254. [PMID: 36770919 PMCID: PMC9921728 DOI: 10.3390/molecules28031254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Brassica incana subsp. raimondoi is an endemic taxon present in a restricted area located on steep limestone cliffs at an altitude of about 500 m a.s.l. in eastern Sicily. In this research, for the first time, studies on the phytochemical profile, the antioxidant properties in cell-free and cell-based systems, the cytotoxicity on normal and cancer cells by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, and on Artemia salina Leach, were performed. The total phenolic, flavonoid, and condensed tannin contents of the leaf hydroalcoholic extract were spectrophotometrically determined. Ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) analysis highlighted the presence of several phenolic acids, flavonoids, and carotenoids, while High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) identified various kaempferol and isorhamnetin derivatives. The extract exhibited different antioxidant properties according to the five in vitro methods used. Cytotoxicity by MTT assay evidenced no impact on normal human fibroblasts (HFF-1) and prostate cancer cells (DU145), and cytotoxicity accompanied by necrotic cell death for colon cancer cells (CaCo-2) and hepatoma cells (HepG2), starting from 100 μg/mL and 500 μg/mL, respectively. No cytotoxic effects were detected by the A. salina lethality bioassay. In the H2O2-induced oxidative stress cell model, the extract counteracted cellular reactive oxygen species (ROS) production and preserved non-protein thiol groups (RSH) affected by H2O2 exposure in HepG2 cells. Results suggest the potential of B. incana subsp. raimondoi as a source of bioactive molecules.
Collapse
Affiliation(s)
- Giuseppe Antonio Malfa
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Francesco Pappalardo
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Vivienne Spadaro
- Department STEBICEF/Section of Botany, Anthropology and Zoology, University of Palermo, Via Archirafi 38, 90123 Palermo, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| |
Collapse
|
3
|
Genovese C, Garozzo A, D’Angeli F, Malfa GA, Bellia F, Tomasello B, Nicolosi D, Malaguarnera R, Ronsisvalle S, Guadagni F, Acquaviva R. Orobanche crenata Forssk. Extract Affects Human Breast Cancer Cell MCF-7 Survival and Viral Replication. Cells 2022; 11:1696. [PMID: 35626733 PMCID: PMC9139723 DOI: 10.3390/cells11101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of death worldwide. The severity of BC strictly depends on the molecular subtype. The less aggressive hormone-positive subtype is treated with adjuvant endocrine therapy (AET), which causes both physical and psychological side effects. This condition strongly impacts the adherence and persistence of AET among oncologic patients. Moreover, viral infections also constitute a serious problem for public health. Despite their efficacy, antiviral agents present several therapeutic limits. Accordingly, in the present work, we investigated the antitumor and antiviral activities of Orobanche crenata Forssk. (O. crenata), a parasitic plant, endemic to the Mediterranean basin, traditionally known for its beneficial properties for human health. METHODS The MTT assay was carried out to evaluate the cytotoxic effect of O. crenata leaf extract (OCLE) on human breast cancer cells (MCF-7 and MDA-MB-231) and the primary HFF-1 cell line. The lactic dehydrogenase (LDH) assay was performed on MCF-7 cells to analyze necrotic cell death. The antioxidant effect of OCLE was evaluated by intracellular determination of the reactive oxygen species and thiol groups, by DPPH and ABTS assays. The antiviral activity of OCLE was determined against Poliovirus 1, Echovirus 9, Human respiratory syncytial virus, Adenovirus type 2 and type 5, Coxsackievirus B1 (CoxB1) and B3 (CoxB3), Herpes simplex type 1 (HSV-1) and type 2 (HSV-2), and β-Coronavirus by the plaque reduction assay. RESULTS The extract, after 24 h of incubation, did not affect MDA-MB-231 and HFF-1 cell viability. However, at the same time point, it showed a dose-dependent inhibitory effect on MCF-7 cells, with an increase in LDH release. OCLE exhibited free radical scavenging activity and significantly increased non-protein thiol levels in MCF-7 cells. OCLE effectively inhibited HSV-1, HSV-2, CoxB1, and CoxB3 replication. CONCLUSIONS The overall results showed an interesting inhibitory effect of OCLE on both MCF-7 cell survival and viral replication.
Collapse
Affiliation(s)
- Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
| | - Adriana Garozzo
- Department of Biomedical and Biotechnological Sciences, Microbiology Section, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Francesco Bellia
- Institute of Crystallography, National Research Council (CNR), 95126 Catania, Italy;
| | - Barbara Tomasello
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| | - Daria Nicolosi
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Microbiology Section, University of Catania, 95125 Catania, Italy
| | - Roberta Malaguarnera
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy; (C.G.); (R.M.)
| | - Simone Ronsisvalle
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
- BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Rosaria Acquaviva
- Nacture S.r.l., Spin-Off University of Catania, 95123 Catania, Italy; (D.N.); (S.R.); (R.A.)
- Department of Drug and Health Sciences, Biochemistry Section, University of Catania, 95125 Catania, Italy; (G.A.M.); (B.T.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, 95125 Catania, Italy
| |
Collapse
|
4
|
D’Angeli F, Guadagni F, Genovese C, Nicolosi D, Trovato Salinaro A, Spampinato M, Mannino G, Lo Furno D, Petronio Petronio G, Ronsisvalle S, Sipala F, Falzone L, Calabrese V. Anti-Candidal Activity of the Parasitic Plant Orobanche crenata Forssk. Antibiotics (Basel) 2021; 10:1373. [PMID: 34827311 PMCID: PMC8615231 DOI: 10.3390/antibiotics10111373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (C. albicans) and Candida glabrata (C. glabrata) are part of the human microbiome. However, they possess numerous virulence factors, which confer them the ability to cause both local and systemic infections. Candidiasis can involve multiple organs, including the eye. In the present study, we investigated the anti-candidal activity and the re-epithelizing effect of Orobanche crenata leaf extract (OCLE). By the microdilution method, we demonstrated an inhibitory effect of OCLE on both C. albicans and C. glabrata growth. By crystal violet and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed the ability of OCLE to inhibit the biofilm formation and the viability of yeast cells, respectively. By germ tube and adhesion assays, we proved the capacity of OCLE to affect the morphological transition of C. albicans and the adhesion of both pathogens to human retinal pigment epithelial cells (ARPE-19), respectively. Besides, by MTT and wound healing assay, we evaluated the cytotoxic and re-epithelizing effects of OCLE on ARPE-19. Finally, the Folin-Ciocalteu and the ultra-performance liquid chromatography-tandem mass spectrometry revealed a high content of phenols and the presence of several bioactive molecules in the extract. Our results highlighted new properties of O. crenata, useful in the control of Candida infections.
Collapse
Affiliation(s)
- Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
| | - Fiorella Guadagni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy; (F.D.); (F.G.)
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Daria Nicolosi
- Nacture S.r.l, Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (G.M.); (D.L.F.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy;
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Federica Sipala
- Department of Drug and Health Sciences, Section of Medicinal Chemistry, University of Catania, 95125 Catania, Italy; (S.R.); (F.S.)
| | - Luca Falzone
- Laboratory of Experimental Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (A.T.S.); (M.S.); (V.C.)
| |
Collapse
|
5
|
Jaradat N, Qadi M, Ali I, Hussein F, Issa L, Rashdan D, Jamoos M, Najem R, Zarour A, Arar M. Phytochemical screening, antiobesity, antidiabetic and antimicrobial assessments of Orobanche aegyptiaca from Palestine. BMC Complement Med Ther 2021; 21:256. [PMID: 34625075 PMCID: PMC8501537 DOI: 10.1186/s12906-021-03431-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Microbial resistance, diabetes mellitus, and obesity are global health care problems that have posed a serious threat to both human and environmental ecosystems. The goals of the present investigations are to investigate the phytoconstituents, antilipase, anti-α-amylase, and antimicrobial activity of Orobanche aegyptiaca Pers. (OA) from Palestine. Methods Identification of the phytoconstituents of OA plant petroleum ether, methylene chloride, chloroform, acetone, and methanol extracts were conducted using pharmacopeia’s methods, while porcine pancreatic lipase and α–amylase inhibitory activities were examined using p-nitrophenyl butyrate and 3,5-dinitro salicylic acid methods, respectively. Moreover, the antimicrobial activity was evaluated utilizing broth microdilution assay against eight bacterial and fungal strains. Results The phytochemical screening results showed that the methanol extract of the OA plant is rich in phytochemical components, also this extract has powerful antilipase potential with an IC50 value of 19.49 ± 0.16 μg/ml comparing with the positive control (Orlistat) which has antilipase activity with IC50 value of 12.3 ± 0.35 μg/ml. Moreover, the methanol and chloroform extracts have powerful α-amylase inhibitory activity with IC50 values of 28.18 ± 0.22 and 28.18 ± 1.22 μg/ml, respectively comparing with Acarbose which has α-amylase inhibitory activity with IC50 dose of 26.3.18 ± 0.28 μg/ml. The antibacterial results showed that the methylene chloride extract exhibited the highest antibacterial activity among the other OA plant extracts with a MIC value of 0.78 mg/ml against S. aureus, while, the methylene chloride, petroleum ether, and chloroform extracts of the OA plant showed potential antifungal activity against C. albicans strains with MIC value of 0.78 mg/ml. Conclusion The OA methanol and chloroform extracts could be excellent candidates as antilipase and anti-α-amylase bioactive materials. In addition, methylene chloride, petroleum ether, and chloroform extracts could be potential natural antimicrobial products.
Collapse
Affiliation(s)
- Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine.
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine.
| | - Iyad Ali
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Fatima Hussein
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Doaa Rashdan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Manal Jamoos
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Re'as Najem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Abdulraziq Zarour
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Mohammad Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| |
Collapse
|
6
|
Irfan A, Imran M, Khalid M, Sami Ullah M, Khalid N, Assiri MA, Thomas R, Muthu S, Raza Basra MA, Hussein M, Al-Sehemi AG, Shahzad M. Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
In Vitro Antibacterial, Anti-Adhesive and Anti-Biofilm Activities of Krameria lappacea (Dombey) Burdet & B.B. Simpson Root Extract against Methicillin-Resistant Staphylococcus aureus Strains. Antibiotics (Basel) 2021; 10:antibiotics10040428. [PMID: 33924336 PMCID: PMC8069196 DOI: 10.3390/antibiotics10040428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a serious threat to public health, due to its large variety of pathogenetic mechanisms. Accordingly, the present study aimed to investigate the anti-MRSA activities of Krameria lappacea, a medicinal plant native to South America. Through Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass spectrometry, we analyzed the chemical composition of Krameria lappacea root extract (KLRE). The antibacterial activity of KLRE was determined by the broth microdilution method, also including the minimum biofilm inhibitory concentration and minimum biofilm eradication concentration. Besides, we evaluated the effect on adhesion and invasion of human lung carcinoma A549 cell line by MRSA strains. The obtained results revealed an interesting antimicrobial action of this extract, which efficiently inhibit the growth, biofilm formation, adhesion and invasion of MRSA strains. Furthermore, the chemical analysis revealed the presence in the extract of several flavonoid compounds and type-A and type-B proanthocyanidins, which are known for their anti-adhesive effects. Taken together, our findings showed an interesting antimicrobial activity of KLRE, giving an important contribution to the current knowledge on the biological activities of this plant.
Collapse
|
8
|
In-vitro and in-silico antioxidant, α-glucosidase inhibitory potentials of abutilins C and D, new flavonoide glycosides from Abutilon pakistanicum. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Antimicrobial, Antioxidant, and Cytotoxic Activities of Juglans regia L. Pellicle Extract. Antibiotics (Basel) 2021; 10:antibiotics10020159. [PMID: 33557378 PMCID: PMC7915249 DOI: 10.3390/antibiotics10020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The difficulty to treat resistant strains-related hospital-acquired infections (HAIs) promoted the study of phytoextracts, known sources of bioactive molecules. Accordingly, in the present study, the pharmacological activities of Juglans regia (L.) pellicle extract (WPE) were investigated. The antiviral effect was tested against Herpes simplex virus type 1 and 2, Poliovirus 1, Adenovirus 2, Echovirus 9, Coxsackievirus B1 through the plaque reduction assay. The antibacterial and antifungal activities were evaluated against medically important strains, by the microdilution method. DPPH and superoxide dismutase (SOD)s-like activity assays were used to determine the antioxidant effect. Besides, the extract was screened for cytotoxicity on Caco-2, MCF-7, and HFF1 cell lines by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. The total phenolic and flavonoid contents were also evaluated. Interestingly, WPE inhibited Herpes simplex viruses (HSVs) replication, bacterial and fungal growth. WPE showed free radical scavenging capacity and inhibited superoxide anion formation in a dose-dependent manner. These effects could be attributed to the high content of phenols and flavonoids, which were 0.377 ± 0.01 mg GE/g and 0.292 ± 0.08 mg CE/g, respectively. Moreover, WPE was able to reduce Caco-2 cell viability, at both 48 h and 72 h. The promising results encourage further studies aimed to better elucidate the role of WPE in the prevention of human infectious diseases.
Collapse
|
10
|
Ben Attia I, Zucca P, Cesare Marincola F, Nieddu M, Piras A, Rosa A, Rescigno A, Chaieb M. Evaluation of the Antioxidant and Cytotoxic Activities on Cancer Cell Line of Extracts of Parasitic Plants Harvested in Tunisia. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/122040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Evaluation of cytotoxic and anticancer effect of Orobanche crenata methanolic extract on cancer cell lines. Tumour Biol 2020; 42:1010428320918685. [DOI: 10.1177/1010428320918685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We aimed to assess the antitumor activity of Orobanche crenata methanolic extract and evaluate its cytotoxic effect on different cancer cell lines to develop an effective natural anticancer drug. Components of O. crenata methanolic extract were analyzed using gas chromatography–mass spectrometry. The extract’s antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power procedures and cytotoxicity of the extract was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase assays. Caspase-3 activity was also estimated. O. crenata methanolic extract shows powerful antioxidant activity. The extract inhibited the propagation of human hepatocellular carcinoma (HepG2), human prostate cancer (PC3), human breast adenocarcinoma (MCF-7), and human colon carcinoma (HCT-116) in a dose-dependent manner. O. crenata–treated cells displayed obvious morphological structures distinctive of apoptosis. MTT assay exposed that the extract presented prevention of cell persistence in a dose-dependent means and revealed extremely cytotoxic activity against HepG2, PC3, MCF-7, and HCT-116 with 50% inhibitory concentration values 30.3, 111, 89.6, and 28.6 µg/mL, respectively, after 24 h of incubation. In addition, treatment of HCT-116 with various concentrations of the extract caused the release of lactate dehydrogenase and induction of caspase-3 activity in a dose-dependent way. In conclusion, our findings suggested that the O. crenata extract possesses potent antioxidant, cytotoxic activity, and anticancer properties which are possibly due to the principal bioactive phytochemical composites existing in this plant. These results can be used to develop new drugs for cancer treatment.
Collapse
|
12
|
Genovese C, D’Angeli F, Attanasio F, Caserta G, Scarpaci KS, Nicolosi D. Phytochemical composition and biological activities of Orobanche crenata Forssk.: a review. Nat Prod Res 2020; 35:4579-4595. [DOI: 10.1080/14786419.2020.1739042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Carlo Genovese
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
- Nacture S.r.l, Spin-off University of Catania, Catania, Italy
| | - Floriana D’Angeli
- Department of Biomedical and Biotechnological Sciences, Biochemistry section, University of Catania, Catania, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Research Council (CNR), Catania, Italy
| | - Gaetano Caserta
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
| | - Kevin Sebastiano Scarpaci
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
- Nacture S.r.l, Spin-off University of Catania, Catania, Italy
| |
Collapse
|
13
|
Jedrejek D, Pawelec S, Piwowarczyk R, Pecio Ł, Stochmal A. Identification and occurrence of phenylethanoid and iridoid glycosides in six Polish broomrapes (Orobanche spp. and Phelipanche spp., Orobanchaceae). PHYTOCHEMISTRY 2020; 170:112189. [PMID: 31731241 DOI: 10.1016/j.phytochem.2019.112189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/05/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
There are about 200 holoparasitic broomrapes (Orobanchaceae) known worldwide, however, only several species have been so far investigated phytochemically. Among Orobanche s.l. are both rare and endangered species, as well as onerous crop pests. This study aims to give a phytochemical description, both qualitative and quantitative, of six broomrape species (Orobanche and Phelipanche taxa) growing in Poland, including species that have not been tested in detail (O. caryophyllacea, O. lutea, O. picridis, and P. arenaria). Sixteen metabolites, including 14 phenylethanoid glycosides (PhGs) and 2 iridoid glycosides (IrGs), were isolated and identified using NMR spectroscopy and hydrolysis, revealing the presence of two previously undescribed PhGs in P. ramosa, named ramoside A and 2'-acetylramoside A. In addition, in the example of O. caryophyllacea, we have reported as the first occurrence of IrGs in broomrapes. Concentrations of phenylethanoids, the main constituents of broomrapes, in the studied plant material (flowering shoots with haustoria) were determined using the UHPLC-PDA method. It was found that P. ramosa has been the richest source of PhGs. In addition, the differences between broomrapes have been visualized using principal component and cluster analysis. The results of the antiradical DPPH test of 13 PhGs confirmed previous findings on the relation of the antioxidant potential with the structure of phenolic moieties - phenolic acid and phenylethanoid unit.
Collapse
Affiliation(s)
- Dariusz Jedrejek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland.
| | - Sylwia Pawelec
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Renata Piwowarczyk
- Department of Botany, Institute of Biology, Jan Kochanowski University, 25-406, Kielce, Poland
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| |
Collapse
|