1
|
Liu YW, Hu XY, Chen XD, Li XM, Yang SQ, Li HL, Wang BG. Chermesins I-N: Bioactive spiromeroterpenoids from the marine-sourced fungus Penicillium chermesinum AS-400. PHYTOCHEMISTRY 2025:114380. [PMID: 39755326 DOI: 10.1016/j.phytochem.2025.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/06/2025]
Abstract
Six previously undescribed spiromeroterpenoids, chermesins I-N (1-6), were isolated and identified from the marine-sourced fungus Penicillium chermesinum AS-400. Their structures were determined by nuclear magnetic resonance and mass spectroscopic data, and the relative and absolute configurations were confirmed based on nuclear Overhauser effect spectroscopic experiments, electronic circular dichroism (ECD) calculations and X-ray crystallographic analysis, and by comparisons of ECD Cotton effects with those of known congeners as well. Structurally, compound 1 represents the first example of spiromeroterpenoid demethylated at C-4. The isolated compounds exhibited inhibitory activities against several aquatic and human pathogenic bacteria with MIC values ranging from 4 to 64 μg/mL.
Collapse
Affiliation(s)
- Yi-Wei Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xue-Yi Hu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Xiao-Dan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| |
Collapse
|
2
|
Thamsiri P, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J, Muanprasat C, Hadsadee S, Jungsuttiwong S. Penicitrisochromans A-C, new isochromans from the marine-derived fungus Penicillium citrinum PSU-MF100. Nat Prod Res 2024:1-7. [PMID: 39428755 DOI: 10.1080/14786419.2024.2416515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Three new isochroman derivatives, penicitrisochromans A-C (1-3), together with 25 known polyketides were isolated from the marine-derived fungus Penicillium citrinum PSU-MF100. Their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of 1 and 2 were established by comparison of specific rotations and electronic circular dichroism (ECD) data with those of the known co-metabolite whereas those of 3 were assigned based on the ECD calculation and biosynthetic consideration. Among the isolated polyketides, three known anthraquinone derivatives, ω-hydroxyemodin, penicillanthranin A and emodin, displayed moderate to strong antibacterial activity against methicillin-resistant Staphylococcus aureus with MIC values of 32, 16 and 4 µg/mL, respectively. For antifungal activity, two known benzopyranones, coniochaetones A and C, exhibited moderate antifungal activity against Candida albicans NCPF3153 and Cryptococcus neoformans ATCC90112 with the respective MIC values of 16 and 64 µg/mL.
Collapse
Affiliation(s)
- Panthong Thamsiri
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Souwalak Phongpaichit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sita Preedanon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Thasala, Nakhonsithammarat, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand
| | - Sarinya Hadsadee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Siriporn Jungsuttiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
3
|
Li X, Cai J, Chen X, Wu Y, Liu Y, Luo X, Zhou X. Discovery and Bioactivity Evaluation of Citrinin Derivatives from the Mangrove Sediment-Derived Fungus Talaromyces sp. SCSIO 41428. Chem Biodivers 2024:e202401938. [PMID: 39242361 DOI: 10.1002/cbdv.202401938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
A dimeric citrinin derivative with a unique spiro[chroman-2,3'-isochroman] skeleton, xerucitrinic acid C (1), and a new citrinin derivative, cladosporin E (6), along with ten known polyketides (2-5 and 7-12), were isolated from the mangrove sediment-derived fungus Talaromyces sp. SCSIO 41428. Their structures were elucidated through comprehensive spectral data analysis. The absolute configurations of 1 and 6 were determined by quantum chemical calculations. Compound 1 exhibited significant inhibitory effects on Staphylococcus aureus and Streptococcus suis, with the MIC of 25 μg/mL for both bacterial strains. Xerucitrinin C (3) exhibited significant radical scavenging activity against DPPH, with an IC50 value of 25.4 μM, and also demonstrated inhibitory activity against phosphodiesterase-4 (PDE4). Moreover, cladosporin C (7) notably inhibited prostate cancer cells PC-3 and 22Rv1, with IC50 values of 6.10 and 9.25 μM, respectively.
Collapse
Affiliation(s)
- Xinlong Li
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinqi Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yanghongyu Wu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Wang D, Wang H, Chen X, Xu Y, He W, Wu D, Zuo M, Zhu W, Wang L. Five previously undescribed citrinin derivatives from the endophytic fungus Penicillium citrinum GZWMJZ-836. PHYTOCHEMISTRY 2024; 220:114032. [PMID: 38369172 DOI: 10.1016/j.phytochem.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Penicillium citrinum GZWMJZ-836 is an endophytic fungus from Drynaria roosii Nakaike. Five previously undescribed citrinin derivatives (1-5) and six intermediates related to their biosynthesis (6-11) were obtained from the extract of this strain's solid fermentation using multiple column chromatography separations, including high-performance liquid chromatography. The structures of these compounds were determined through comprehensive spectroscopic analyses, primarily using NMR and HRESIMS data. The stereochemistry was mainly confirmed by ECD calculations, and the configurations of C-7' in compounds 4 and 5 were determined using 13C NMR calculations. Compounds 4-5 and 8 showed antibacterial activity against five strains, with minimum inhibitory concentration values ranging from 7.8 to 125 μM. Compounds 4 and 7 exhibited inhibitions against three plant pathogenic fungi, with IC50 values ranging from 66.6 to 152.1 μM. Additionally, a putative biosynthetic pathway for compounds 1-5 derived from citrinin was proposed.
Collapse
Affiliation(s)
- Dongyang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Product Research Center of Guizhou Province, Guiyang, 550014, China
| | - Huanhuan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Product Research Center of Guizhou Province, Guiyang, 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Xuli Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Product Research Center of Guizhou Province, Guiyang, 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Wenwen He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Product Research Center of Guizhou Province, Guiyang, 550014, China
| | - Dan Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Product Research Center of Guizhou Province, Guiyang, 550014, China
| | - Mingxing Zuo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Product Research Center of Guizhou Province, Guiyang, 550014, China
| | - Weiming Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Product Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
5
|
Gao Y, Wang J, Meesakul P, Zhou J, Liu J, Liu S, Wang C, Cao S. Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. Mar Drugs 2024; 22:70. [PMID: 38393041 PMCID: PMC10890532 DOI: 10.3390/md22020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.
Collapse
Affiliation(s)
- Yukang Gao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jianjian Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| | - Jiamin Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jinyan Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shuo Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| |
Collapse
|
6
|
Lindsay CA, Kinghorn AD, Rakotondraibe HL. Bioactive and unusual steroids from Penicillium fungi. PHYTOCHEMISTRY 2023; 209:113638. [PMID: 36914145 PMCID: PMC10077519 DOI: 10.1016/j.phytochem.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Penicillium fungi are represented by various species and can be found worldwide and thrive in a range of environments, such as in the soil, air, and indoors, and in marine environments, as well as food products. Chemical investigation of species of this genus has led to the discovery of compounds from several structural classes with varied bioactivities. As an example, this genus has been a source of bioactive and structurally unusual steroids. The scope of this short review is to cover specialized metabolites of the steroid class and the cytotoxic, antimicrobial, anti-inflammatory as well as phytotoxic activities of these compounds. Other steroids that possess unusual structures, with significant bioactivity yet to determined, will also be discussed to further demonstrate the structural diversity of this compound class from Penicillium fungi, and hopefully inspire the further exploration of such compounds to uncover their activity.
Collapse
Affiliation(s)
- Charmaine A Lindsay
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Harinantenaina L Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Sawant AM, Navale VD, Vamkudoth KR. Isolation and Molecular Characterization of Indigenous Penicillium chrysogenum/ rubens Strain Portfolio for Penicillin V Production. Microorganisms 2023; 11:1132. [PMID: 37317105 PMCID: PMC10221864 DOI: 10.3390/microorganisms11051132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium chrysogenum, P. rubens, P. brocae, P. citrinum, Aspergillus fumigatus, A. sydowii, Talaromyces tratensis, Scopulariopsis brevicaulis, P. oxalicum, and P. dipodomyicola using the internal transcribed spacer (ITS) region and the β-tubulin (BenA) gene for precise species identification from Indian origin. Furthermore, the BenA gene distinguished between complex species of P. chrysogenum and P. rubens to a certain extent which partially failed by the ITS region. In addition, these species were distinguished by metabolic markers profiled by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Secalonic acid, Meleagrin, and Roquefortine C were absent in P. rubens. The crude extract evaluated for PenV production by antibacterial activities by well diffusion method against Staphylococcus aureus NCIM-2079. A high-performance liquid chromatography (HPLC) method was developed for simultaneous detection of 6-APA, phenoxymethyl penicillin (PenV), and phenoxyacetic acid (POA). The pivotal objective was the development of an indigenous strain portfolio for PenV production. Here, a library of 80 strains of P. chrysogenum/rubens was screened for PenV production. Results showed 28 strains capable of producing PenV in a range from 10 to 120 mg/L when 80 strains were screened for its production. In addition, fermentation parameters, precursor concentration, incubation period, inoculum size, pH, and temperature were monitored for the improved PenV production using promising P. rubens strain BIONCL P45. In conclusion, P. chrysogenum/rubens strains can be explored for the industrial-scale PenV production.
Collapse
Affiliation(s)
- Amol M. Sawant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishwambar D. Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
9
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Tong J, Zhang Y, Xu Y, Han Y, Li C, Zhuang W, Che Y. Spirocitrinols A and B, citrinin derivatives with a spiro[chromane-2,3'-isochromane] skeleton from Penicillium citrinum. RSC Adv 2023; 13:6124-6129. [PMID: 36814878 PMCID: PMC9940459 DOI: 10.1039/d3ra00665d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Spirocitrinols A (1) and B (2), two new citrinin-derived metabolites possessing a spiro[chromane-2,3'-isochromane] skeleton, were isolated from cultures of Penicillium citrinum. Their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2 were assigned by electronic circular dichroism calculations. Compound 2 is the first naturally occurring trimeric citrinin derivative with a spiro[chromane-2,3'-isochromane] core. Compound 1 showed modest cytotoxicity against A549 human tumor cells.
Collapse
Affiliation(s)
- Junjie Tong
- Tianjin University of Traditional Chinese Medicine Tianjin 300193 People's Republic of China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology Beijing 100850 People's Republic of China
| | - Yang Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Yangyang Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Chuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Wenying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 People's Republic of China
| | - Yongsheng Che
- Tianjin University of Traditional Chinese Medicine Tianjin 300193 People's Republic of China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| |
Collapse
|
11
|
Pang S, Guo ZG, Wang L, Guo QF, Cao F. Anti-IAV indole-diterpenoids from the marine-derived fungus Penicillium citrinum. Nat Prod Res 2023; 37:586-591. [PMID: 35608160 DOI: 10.1080/14786419.2022.2078820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new indole-diterpenoid, penijanthine E (1), and a known analogue (2), were obtained from the PDB culture of the marine-derived fungus Penicillium citrinum ZSS-9. The absolute configuration of 1 was elucidated by calculated TDDFT ECD and DP4plus calculations. The absolute configuration of 2 was confirmed by single-crystal X-ray diffraction analysis and TDDFT ECD calculations. Compounds 1 and 2 showed antiviral activity against influenza A virus (IAV) of A/WSN/33(H1N1) and A/PR/8/34(H1N1) strains with IC50 values ranging from 12.6 to 46.8 μM.
Collapse
Affiliation(s)
- Sen Pang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Zhi-Gang Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Li Wang
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Qing-Feng Guo
- Huanghe Science & Technology College, Zhengzhou, P.R. China
| | - Fei Cao
- Huanghe Science & Technology College, Zhengzhou, P.R. China.,College of Pharmaceutical Sciences, Hebei University, Baoding, P.R. China
| |
Collapse
|
12
|
Cadelis M, Grey A, van de Pas S, Geese S, Weir BS, Copp B, Wiles S. Terrien, a metabolite made by Aspergillus terreus, has activity against Cryptococcus neoformans. PeerJ 2022; 10:e14239. [PMID: 36275475 PMCID: PMC9586122 DOI: 10.7717/peerj.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial compounds, including antibiotics, have been a cornerstone of modern medicine being able to both treat infections and prevent infections in at-risk people, including those who are immune-compromised and those undergoing routine surgical procedures. Their intense use, including in people, animals, and plants, has led to an increase in the incidence of resistant bacteria and fungi, resulting in a desperate need for novel antimicrobial compounds with new mechanisms of action. Many antimicrobial compounds in current use originate from microbial sources, such as penicillin from the fungus Penicillium chrysogenum (renamed by some as P. rubens). Through a collaboration with Aotearoa New Zealand Crown Research Institute Manaaki Whenua-Landcare Research we have access to a collection of thousands of fungal cultures known as the International Collection of Microorganisms from Plants (ICMP). The ICMP contains both known and novel species which have not been extensively tested for their antimicrobial activity. Initial screening of ICMP isolates for activity against Escherichia coli and Staphylococcus aureus directed our interest towards ICMP 477, an isolate of the soil-inhabiting fungus, Aspergillus terreus. In our investigation of the secondary metabolites of A. terreus, through extraction, fractionation, and purification, we isolated nine known natural products. We evaluated the biological activity of selected compounds against various bacteria and fungi and discovered that terrein (1) has potent activity against the important human pathogen Cryptococcus neoformans.
Collapse
Affiliation(s)
- Melissa Cadelis
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand,Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alex Grey
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Shara van de Pas
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Soeren Geese
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Bevan S. Weir
- Manaaki Whenua – Landcare Research, Auckland, New Zealand
| | - Brent Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Endres CT, Rigo GV, Loges LA, Landell MF, Silva DB, Macedo AJ, Tasca T. Mass Spectrometry Metabolomics Approach Reveals Anti-Trichomonas vaginalis Scaffolds from Marine Fungi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1014-1022. [PMID: 36102994 DOI: 10.1007/s10126-022-10164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection (STI) in the world caused by Trichomonas vaginalis. Failures in the treatment with the 5-nitroimidazole class including parasite resistance to metronidazole elicit new alternatives. Marine natural products are sources of several relevant molecules, presenting a variety of metabolites with numerous biological activities. In this work, we evaluated the anti-T. vaginalis activity of fungi associated with marine invertebrates by mass spectrometry-based metabolomics approaches. After screening of six marine fungi, extract from Penicillium citrinum FMPV 15 has shown to be 100% active against T. vaginalis, and the gel permeation column on Sephadex LH-20® yielded twelve organic fractions which five showed to be active. Metabolomics and statistical analyses were performed with all the samples (extract and fractions), and several compounds were suggested to be related to the activity. These components include citrinin, dicitrinin C, citreoisocoumarin, dihydrocitrinone, decarboxycitrinin, penicitrinone C, and others. The minimum inhibitory concentration (MIC) value of anti-T. vaginalis activity of citrinin was 200 µM. The marine fungi metabolites show potential as new alternatives to overcome drug resistance in T. vaginalis infections.
Collapse
Affiliation(s)
- Carla Teresinha Endres
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Graziela Vargas Rigo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Luciana Angelo Loges
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Melissa Fontes Landell
- Laboratório de Diversidade Molecular, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais E Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos E Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Mato Grosso Do Sul, Campo Grande, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Liu Z, Li S, Chen Y, Li M, Liu H, Zhang W. Cytotoxic polyketides from the deep-sea-derived fungus Aspergillus fischeri FS452. Nat Prod Res 2021; 36:5701-5707. [PMID: 34905421 DOI: 10.1080/14786419.2021.2015595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Six globoscin derivatives (1‒6) including two new ones fischerins A (1) and B (2) were isolated from the deep-sea-derived fungus Aspergillus fischeri FS452. Their structures were elucidated by comprehensive spectroscopic analysis and the absolute configurations were determined by the quantum chemical ECD calculations. The in vitro cytotoxicity assays indicated that fischerin B (2) exhibited potential activities against the four tested human cancer cell lines (SF-268, MCF-7, HepG-2 and A549) with the IC50 values in the range of 7-10 µM.
Collapse
Affiliation(s)
- Zhaoming Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Saini Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuchan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingqiong Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongxin Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weimin Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
15
|
Mbaoji FN, Nweze JA, Yang L, Huang Y, Huang S, Onwuka AM, Peter IE, Mbaoji CC, Jiang M, Zhang Y, Pan L, Yang D. Novel Marine Secondary Metabolites Worthy of Development as Anticancer Agents: A Review. Molecules 2021; 26:molecules26195769. [PMID: 34641312 PMCID: PMC8510081 DOI: 10.3390/molecules26195769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Secondary metabolites from marine sources have a wide range of biological activity. Marine natural products are promising candidates for lead pharmacological compounds to treat diseases that plague humans, including cancer. Cancer is a life-threatening disorder that has been difficult to overcome. It is a long-term illness that affects both young and old people. In recent years, significant attempts have been made to identify new anticancer drugs, as the existing drugs have been useless due to resistance of the malignant cells. Natural products derived from marine sources have been tested for their anticancer activity using a variety of cancer cell lines derived from humans and other sources, some of which have already been approved for clinical use, while some others are still being tested. These compounds can assault cancer cells via a variety of mechanisms, but certain cancer cells are resistant to them. As a result, the goal of this review was to look into the anticancer potential of marine natural products or their derivatives that were isolated from January 2019 to March 2020, in cancer cell lines, with a focus on the class and type of isolated compounds, source and location of isolation, cancer cell line type, and potency (IC50 values) of the isolated compounds that could be a guide for drug development.
Collapse
Affiliation(s)
- Florence Nwakaego Mbaoji
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Justus Amuche Nweze
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Soil and Water Research Infrastructure, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Liyan Yang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Yangbin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Akachukwu Marytheresa Onwuka
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Ikechukwu Emmanuel Peter
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Cynthia Chioma Mbaoji
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China;
| | - Yunkai Zhang
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Lixia Pan
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| |
Collapse
|
16
|
Wu GY, Zhu ZY, Zhang X, Wang MM, Li JX, Hu YJ, Tan HB. Chemical constituents from the Streptomyces morookaensis strain Sm4-1986. Nat Prod Res 2021; 36:3681-3688. [PMID: 33538196 DOI: 10.1080/14786419.2021.1881095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Three new compounds, including 6-methoxy-3,4,5,7-tetramethylisochromane-3,8-diol (1), 3,4,5,7-tetramethylisochromane-3,6,8-triol (2), streptimidone derivative (3), along with ten known compounds (4-13) were isolated from the Streptomyces morookaensis strain Sm4-1986. Their chemical structures were established based on the information from UV, IR, NMR (1H NMR, 13C NMR, 1H-1H COSY, HSQC, HMBC, NOESY), and mass spectroscopic. Moreover, all the isolated new compounds were evaluated for antibacterial activities (S. aureus, B. cereus, S. epidermids and methicillin-resistant S. aureus) and their cytotoxicities against MCF-7, A549, Hela tumor cell lines and Marc-145 normal cell line.
Collapse
Affiliation(s)
- Gui-Yun Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Zhi-Yan Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China.,College of Life Sciences, Yangtze University, Jingzhou China
| | - Xiao Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Miao-Miao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Jian-Xiong Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| | - Ying-Jie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-Bo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China
| |
Collapse
|
17
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Antibiotics from Extremophilic Micromycetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:903-971. [PMID: 33390684 PMCID: PMC7768999 DOI: 10.1134/s1068162020060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.
Collapse
Affiliation(s)
- A. A. Baranova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - V. A. Alferova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - V. A. Korshun
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - A. P. Tyurin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
18
|
Hisham Shady N, Youssif KA, Sayed AM, Belbahri L, Oszako T, Hassan HM, Abdelmohsen UR. Sterols and Triterpenes: Antiviral Potential Supported by In-Silico Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 10:E41. [PMID: 33375282 PMCID: PMC7823815 DOI: 10.3390/plants10010041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
The acute respiratory syndrome caused by the novel coronavirus (SARS-CoV-2) caused severe panic all over the world. The coronavirus (COVID-19) outbreak has already brought massive human suffering and major economic disruption and unfortunately, there is no specific treatment for COVID-19 so far. Herbal medicines and purified natural products can provide a rich resource for novel antiviral drugs. Therefore, in this review, we focused on the sterols and triterpenes as potential candidates derived from natural sources with well-reported in vitro efficacy against numerous types of viruses. Moreover, we compiled from these reviewed compounds a library of 162 sterols and triterpenes that was subjected to a computer-aided virtual screening against the active sites of the recently reported SARS-CoV-2 protein targets. Interestingly, the results suggested some compounds as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia 61519, Egypt;
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Tomasz Oszako
- Departement of Forest Protection, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
19
|
Long JY, Wang JF, Liao SR, Lin XP, Zhou XF, Li YQ, Yang B, Liu YH. Four new steroids from the marine soft coral-derived fungus Penicillium sp. SCSIO41201. Chin J Nat Med 2020; 18:250-255. [PMID: 32402400 DOI: 10.1016/s1875-5364(20)30030-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/15/2022]
Abstract
Penicildiones A-D (1-4), four new steroids derivatives together with three known compounds including 16α-methylpregna-17α,19-dihydroxy-(9,11)-epoxy-4-ene-3,18-dione-20-acetoxy (5), stachybotrylactone B (6) and stachybotrin (7) were isolated from the soft coral-derived fungus Penicillium sp. SCSIO41201, cultured in the 1% NaCl PDB substrate. Their structures were determined through spectroscopic methods and X-ray crystallography. Biological evaluation results revealed that 6 exhibited significant cytotoxic activity against HL-60, K562, MOLT-4, ACHN, 786-O, and OS-RC-2 cell lines with IC50 values of 5.23, 4.12, 4.31, 23.55, 7.65 and 10.81 μmol·L-1, respectively, while other compounds showed weak or no cytotoxicity at 50 μmol·L-1.
Collapse
Affiliation(s)
- Jie-Yi Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Feng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Sheng-Rong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiu-Ping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xue-Feng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yun-Qiu Li
- School of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yong-Hong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; South China Branch of Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
20
|
Gillard RM, Brimble MA. Benzannulated spiroketal natural products: isolation, biological activity, biosynthesis, and total synthesis. Org Biomol Chem 2019; 17:8272-8307. [DOI: 10.1039/c9ob01598a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A review discussing the isolation, biological activity, biosynthesis, and total synthesis of naturally occurring benzannulated spiroketals.
Collapse
Affiliation(s)
- Rachel M. Gillard
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|