1
|
Nie WZ, Shen QK, Quan ZS, Guo HY, Li YM. Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review. Mini Rev Med Chem 2024; 24:1368-1384. [PMID: 38265368 DOI: 10.2174/0113895575277085231123165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Usnic acid has a variety of biological activities, and has been widely studied in the fields of antibacterial, immune stimulation, antiviral, antifungal, anti-inflammatory and antiparasitic. Based on this, usnic acid is used as the lead compound for structural modification. In order to enhance the biological activity and solubility of usnic acid, scholars have carried out a large number of structural modifications, and found some usnic acid derivatives to be of more potential research value. In this paper, the structural modification, biological activity and structure-activity relationship of usnic acid were reviewed to provide reference for the development of usnic acid derivatives.
Collapse
Affiliation(s)
- Wen-Zhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ya-Mei Li
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
2
|
Bangalore PK, Pedapati RK, Pranathi AN, Batchu UR, Misra S, Estharala M, Sriram D, Kantevari S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol Divers 2022; 27:811-836. [PMID: 35608808 DOI: 10.1007/s11030-022-10456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Lichen secondary metabolites are well explored medicinal agents with diverse pharmacological properties. One of the important antibiotic lichen secondary metabolites is usnic acid. Its diverse medicinal profiles prompted us to explore it as a potential antitubercular molecule. Towards this direction, continuing our efforts on the discovery and development of new analogs with potent antitubercular properties we designed, synthesized, and evaluated a set of 37 usnic acid enaminone-coupled aryl-n-hexanamides (3-39). The study yielded a 3,4-dimethoxyphenyl compound (13, 5.3 µM) as the most active anti-TB molecule. The docking studies were performed on 7 different enzymes to better understand the binding modes, where it was observed that compound 13 bound strongly with glucose dehydrogenase (Gscore: - 9.03). Further antibacterial investigations revealed compound 2 with potent inhibition on Salmonella typhi and Bacillus subtilis (MIC 3 µM) and MIC values of 7 and 14 µM on Streptococcus mutans and Escherichia coli respectively. Compound 19 (3-F-5-CF3-phenyl) displayed encouraging antibacterial profiles against E. coli, S. typhi and S. mutans with MIC values of 10 µM respectively. Interestingly, compound 20 (2,6-difluorophenyl) also displayed good antibacterial activity against E. coli with an MIC value of 6 µM. These encouraging pharmacological results will help for better designing and developing usnic acid-based semi-synthetic derivatives as potential antimicrobial agents. A set of 37 new usnic acid enaminone-coupled aryl-n-hexanamides were synthesized and evaluated as potential antimicrobial agents. Compound 13 was identified as the most active antitubercular molecule. 13 was further docked against 7 different enzymes of tuberculosis. The molecule displayed maximum binding energy with the enzyme Glucose dehydrogenase (Gscore: - 9.03), indicating that these hexanamides possibly act by inhibiting the glucose metabolic pathway of the bacterium. Surprisingly, the intermediate hexanoic acid 2 was identified as potent antibacterial agent, acting on both gram-positive and gram-negative bacterial strains (3-14 μM). The active compounds may be subjected to structural iterations to develop further leads.
Collapse
Affiliation(s)
- Pavan Kumar Bangalore
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Ravi Kumar Pedapati
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Abburi Naga Pranathi
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Uma Rajeswari Batchu
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Sunil Misra
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Madhurekha Estharala
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Hansen PE. NMR of Natural Products as Potential Drugs. Molecules 2021; 26:3763. [PMID: 34205539 PMCID: PMC8235798 DOI: 10.3390/molecules26123763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/21/2023] Open
Abstract
This review outlines methods to investigate the structure of natural products with emphasis on intramolecular hydrogen bonding, tautomerism and ionic structures using NMR techniques. The focus is on 1H chemical shifts, isotope effects on chemical shifts and diffusion ordered spectroscopy. In addition, density functional theory calculations are performed to support NMR results. The review demonstrates how hydrogen bonding may lead to specific structures and how chemical equilibria, as well as tautomeric equilibria and ionic structures, can be detected. All these features are important for biological activity and a prerequisite for correct docking experiments and future use as drugs.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Krajka-Kuźniak V, Paluszczak J, Kleszcz R, Baer-Dubowska W. (+)-Usnic acid modulates the Nrf2-ARE pathway in FaDu hypopharyngeal carcinoma cells. Mol Cell Biochem 2021; 476:2539-2549. [PMID: 33635505 PMCID: PMC8119403 DOI: 10.1007/s11010-021-04092-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022]
Abstract
Naturally occurring phytochemicals of different origin and structure, arctigenin, bergenin, usnic acid and xanthohumol, were shown to affect Nrf2 pathway in the context of various diseases, but their effect on this pathway in cancer cells was not extensively investigated. This study aimed to evaluate the effect of these compounds on Nrf2 expression and activation in hypopharyngeal FaDu squamous cell carcinoma cells. FaDu cells were treated with 2 or 10 μM arctigenin, bergenin, (+)-usnic acid or xanthohumol for 24 h. While arctigenin, bergenin, and xanthohumol did not affect either Nrf2 expression or activation, (+)-usnic acid treatment increased its transcript level and increased the nuclear/cytosol Nrf2 protein ratio—the measure of Nrf2 pathway activation. Consequently, (+)-usnic acid enhanced the transcription and translation of Nrf2 target genes: NQO1, SOD, and to a lesser extent, GSTP. The treatment of FaDu cells with (+)-usnic acid decreased both GSK-3β transcript and protein level, indicating its possible involvement in Nrf2 activation. All the tested compounds decreased Bax mRNA but did not change the level of Bax protein. (+)-Usnic acid tended to increase the percentage of early apoptotic cells and LC3 protein, autophagy marker. Significant induction of p53 also was observed after treatment with (+)-usnic acid. In summary, the results of this study indicate that low concentrations of (+)-usnic acid activate Nrf2 transcription factor, most probably as a result of ROS accumulation, but do not lead to FaDu hypopharyngeal carcinoma cells death.
Collapse
Affiliation(s)
- Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland.
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|