1
|
Ning W, Gao G, Zhou Y, Li WQ, Yang HH, Duan XB, Li X, Gong YB, Li D, Guo R. Calcitonin gene-related peptide ameliorates sepsis-induced intestinal injury by suppressing NLRP3 inflammasome activation. Int Immunopharmacol 2023; 116:109747. [PMID: 36706592 DOI: 10.1016/j.intimp.2023.109747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Intestinal damage has long been viewed as the primary cause of sepsis-induced multiple organ dysfunction syndrome (MODS). Previous studies have demonstrated that calcitonin gene-related peptide (CGRP) exhibits anti-inflammatory and protective effects in mice exposed to endotoxin. This study investigated whether CGRP protects against sepsis-induced intestinal damage and its underlying mechanisms. Using a murine caecal ligation and puncture (CLP) model, we observed elevated serum and intestinal CGRP levels in septic mice. CGRP knockout (KO) mice showed more severe intestinal barrier damage, excessive NLRP3 inflammasome activation and higher levels of inflammation. In vitro, we used lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to activate the NLRP3 inflammasome in MODE-K murine intestinal epithelial cells. CGRP inhibited NF-κB pathway activation; prevented ASC assembly and ROS accumulation; significantly decreased NLRP3, Caspase-1 p10, and IL-1β levels and LDH release; and increased cell viability. Treatment with an IL-1β inhibitor or CGRP suppressed p38 MAPK and ERK1/2 pathway activation and increased ZO-1 and Occludin protein levels in LPS+ATP-treated MODE-K cells. Finally, we used the CGRP upstream agonist drug rutaecarpine (RUT) to control endogenous CGRP release in mice, and this drug demonstrated good therapeutic effects on septic intestinal injury. In conclusion, our results suggest that CGRP ameliorates sepsis-induced intestinal damage, providing valuable insights for drug development.
Collapse
Affiliation(s)
- Wei Ning
- Laboratory Department, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ge Gao
- Laboratory Department, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Xiang-Bing Duan
- Laboratory Department, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xin Li
- Laboratory Department, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yi-Bo Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Dai Li
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha 410005, China.
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
2
|
Xiao SJ, Xu XK, Chen W, Xin JY, Yuan WL, Zu XP, Shen YH. Traditional Chinese medicine Euodiae Fructus: botany, traditional use, phytochemistry, pharmacology, toxicity and quality control. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:6. [PMID: 36790599 PMCID: PMC9931992 DOI: 10.1007/s13659-023-00369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Euodiae Fructus, referred to as "Wuzhuyu" in Chinese, has been used as local and traditional herbal medicines in many regions, especially in China, Japan and Korea, for the treatment of gastrointestinal disorders, headache, emesis, aphtha, dermatophytosis, dysentery, etc. Substantial investigations into their chemical and pharmacological properties have been performed. Recently, interest in this plant has been focused on the different structural types of alkaloids like evodiamine, rutaecarpine, dehydroevodiamine and 1-methyl-2-undecyl-4(1H)-quinolone, which exhibit a wide range of pharmacological activities in preclinical models, such as anticancer, antibacterial, anti-inflammatory, anti-cardiovascular disease, etc. This review summarizes the up-to-date and comprehensive information concerning the botany, traditional uses, phytochemistry, pharmacology of Euodiae Fructus together with the toxicology and quality control, and discusses the possible direction and scope for future research on this plant.
Collapse
Affiliation(s)
- Si-Jia Xiao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xi-Ke Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Jia-Yun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wen-Lin Yuan
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China
| | - Xian-Peng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| | - Yun-Heng Shen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
3
|
Chemical constituents from the stems and leaves of Amomum villosum Lour. and their anti-inflammatory and antioxidant activities. Bioorg Chem 2023; 131:106281. [PMID: 36434951 DOI: 10.1016/j.bioorg.2022.106281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Amomum villosum Lour. is a medicinal and edible plant, whose medicinal parts are dried and mature fruits, and its stems and leaves are always treated as waste. HPLC-MS/MS analysis showed that the chemical components contained in the stems/leaves of A. villosum and those in fruits are quite different. To discover potential active ingredients from the stems/leaves of A. villosum, phytochemical evaluation of the stems/leaves of A. villosum was conducted to isolate and identify-four undescribed compounds (1, 2a, 2b, and 3) along with 41 known ones (4a, 4b, 5a, 5b, and 6-42). All isolated compounds were assessed for their anti-inflammatory and antioxidant activities. Among them, compounds 5b, 33, 34, and 38 exhibited anti-inflammatory activity, and compounds 1, 4a, 4b, 6, 7, 15, 33, 35, 37, and 41 showed antioxidant effects. Among them, the new compound 1 showed a significant antioxidant effect via activation of NRF2/HO-1 pathways. Therefore, the leaves and stems of A. villosum may be served as a potential medicine or dietary supplement for preventing and treating diseases resulting from inflammation and oxidative stress.
Collapse
|
4
|
Nam Hoang N, Kodama T, Nwet Win N, Prema, Minh Do K, Abe I, Morita H. A New Monoterpene from the Rhizomes of Alpinia galanga and Its Anti-Vpr Activity. Chem Biodivers 2021; 18:e2100401. [PMID: 34415099 DOI: 10.1002/cbdv.202100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022]
Abstract
A new menthane-type monoterpene, alpigalanol (1), together with four known terpenes (2-5) were isolated from the ethyl acetate soluble fraction of the 70 % ethanol extract of the Alpinia galanga rhizomes. The structure of 1 was determined by spectroscopic analyses, including 1D- and 2D-NMR. The extract of the A. galanga rhizomes and all isolated compounds (1-5) possessed Vpr inhibitory activities against the TREx-HeLa-Vpr cells at a concentration of 1.25 μM without showing any cytotoxicity.
Collapse
Affiliation(s)
- Nhat Nam Hoang
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Nwet Nwet Win
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Prema
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan.,Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Kiep Minh Do
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|