1
|
Liang MS, Huang Y, Huang SF, Zhao Q, Chen ZS, Yang S. Flavonoids in the Treatment of Non-small Cell Lung Cancer via Immunomodulation: Progress to Date. Mol Diagn Ther 2025:10.1007/s40291-025-00772-y. [PMID: 40036006 DOI: 10.1007/s40291-025-00772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Lung cancer is one of the most common malignancies in the world, while non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancers. Most patients with NSCLC have advanced stage disease at diagnosis, and the 5-year survival rate can be discouragingly low. Flavonoids are widely found in fruits, vegetables, teas, and medicinal plants, with a variety of functional effects, including anti-inflammatory, antioxidant, and anticancer properties. This review aims to focus on the research progress of flavonoids in the treatment of NSCLC, including immunomodulatory effects on NSCLC, promotion of reactive oxygen species (ROS) production, interaction with microRNA (miRNA), and interactions with certain proteins. In addition, combining flavonoids and anticancer agents, radiotherapy, or nanoparticles can reverse NSCLC drug resistance, inducing apoptosis of cancer cells. It therefore appears that flavonoids alone or in combination with other treatment agents may be a promising therapeutic modality for treating NSCLC, with great potential in mass production and clinical applications.
Collapse
Affiliation(s)
- Man-Shan Liang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yang Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sheng-Feng Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qi Zhao
- Cancer Center, Institute of Translational Medicine,Faculty of Health Sciences, University of Macau, Macau SPR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SPR, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA.
| | - Shuo Yang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Liu J, Li SM, Tang YJ, Cao JL, Hou WS, Wang AQ, Wang C, Jin CH. Jaceosidin induces apoptosis and inhibits migration in AGS gastric cancer cells by regulating ROS-mediated signaling pathways. Redox Rep 2024; 29:2313366. [PMID: 38318818 PMCID: PMC10854459 DOI: 10.1080/13510002.2024.2313366] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Jaceosidin (JAC) is a natural flavonoid with anti-oxidant and other pharmacological activities; however, its anti-cancer mechanism remains unclear. We investigated the mechanism of action of JAC in gastric cancer cells. Cytotoxicity and apoptosis assays showed that JAC effectively killed multiple gastric cancer cells and induced apoptosis in human gastric adenocarcinoma AGS cells via the mitochondrial pathway. Network pharmacological analysis suggested that its activity was linked to reactive oxygen species (ROS), AKT, and MAPK signaling pathways. Furthermore, JAC accumulated ROS to up-regulate p-JNK, p-p38, and IκB-α protein expressions and down-regulate the p-ERK, p-STAT3, and NF-κB protein expressions. Cell cycle assay results showed that JAC accumulated ROS to up-regulate p21 and p27 protein expressions and down-regulate p-AKT, CDK2, CDK4, CDK6, Cyclin D1, and Cyclin E protein expressions to induce G0/G1 phase arrest. Cell migration assay results showed JAC accumulated ROS to down-regulate Wnt-3a, p-GSK-3β, N-cadherin, and β-catenin protein expressions and up-regulate E-cadherin protein expression to inhibit migration. Furthermore, N-acetyl cysteine pre-treatment prevented the change of these protein expressions. In summary, JAC induced apoptosis and G0/G1 phase arrest and inhibited migration through ROS-mediated signaling pathways in AGS cells.
Collapse
Affiliation(s)
- Jian Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, People’s Republic of China
| | - Yan-Jun Tang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Jing-Long Cao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Wen-Shuang Hou
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - An-Qi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Chang Wang
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Cheng-Hao Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, People’s Republic of China
| |
Collapse
|
3
|
Ma C, Yin J, Feng X, Wang X, Cao X, Zhang C, Cui R, Wei J, He X, Li Y, Chen L. Belamcanda chinensis extract inhibits non-small cell lung cancer proliferation and induces apoptosis via inhibiting the MAPK (Ras/Raf) and Akt pathways. Heliyon 2024; 10:e36032. [PMID: 39229537 PMCID: PMC11369428 DOI: 10.1016/j.heliyon.2024.e36032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is associated with high mortality and morbidity rates. Despite major progress of treatment of NSCLC over the past few decades, the prognosis of advanced NSCLC is poor, with 5-year survival rates ranging from 2 % to 13 %. Belamcanda chinensis is a traditional Chinese medicine used to promote blood circulation, reduce swelling, heal ulcers, disperse lumps and tumors, and resolve blood stasis. In the present study, the anti-proliferative and pro-apoptotic effects and potential mechanisms of action of Belamcanda chinensis extract (BCE) in SPC-A1 and NCI-H460 NSCLC cells were investigated using MTS, flow cytometry, and western blotting. Also, xenograft model in vivo was established to investigate the anti-NSCLC effects of BCE. The compounds in BCE were quantified using gas chromatography-mass spectrometry (GC-MS). Twenty compounds were found in BCE, and BCE induced cell cycle arrest significantly inhibited the proliferation of NSCLC. Furthermore, BCE was found to induce Cyto C release and the activation of Caspase-3, -8, -9, PARP, ultimately inducing apoptosis in NSCLC cells through both exogenous and endogenous apoptotic pathways (the mitochondrial pathway). BCE also blocked the MAPK (Ras/Raf) and Akt signaling pathways, significantly downregulating the expression of Ras, Raf, Erk1/2, p-Erk1/2, Akt, and p-Akt proteins. Furthermore, BCE significantly inhibited the growth of NSCLC cells SPC-A1 in nude mice and downregulated Ras, Raf, Akt, and p-Akt expression in vivo. The antitumor effects of BCE suggest its potential clinical application in patients with NSCLC, especially in those bearing Ras or Raf mutations.
Collapse
Affiliation(s)
- Chong Ma
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingyi Yin
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaodie Cao
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chen Zhang
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Rongjie Cui
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingru Wei
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xu He
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yan Li
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Li Chen
- Department of Pathophysiology, School of Basic Medicine, Kunming University of Science and Technology, Kunming, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
5
|
Bayram P, Aksak Karamese S, Özdemir B, Durak A, Billur D. The effects of cisplatin and jaceosidin on SH-SY5Y neuroblastoma cells: an electron microscopic, molecular and biochemical study. Ultrastruct Pathol 2023; 47:388-397. [PMID: 37246956 DOI: 10.1080/01913123.2023.2218911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
In this study, our aim was to show both the single and combined effects of cisplatin and jaceosidin in SHSY-5Y neuroblastoma cells. For this purpose, we used MTT cellular viability assay, Enzyme-Linked Immunosorbent Assay (ELISA), Transmission Electron Microscopy (TEM), Immunofluorescence Staining Assay (IFA) and Western blotting (WB) assay. According to MTT findings, IC50 dose was detected as 50 µM cisplatin and 160 µM jaceosidin co-application. Therefore, experimental groups were finally selected as control, cisplatin, 160 µM jaceosidin and Cisplatin +160 µM jaceosidin. Cell viability was decreased in all groups, and the IFA findings confirmed the viability analysis. WB data indicated that matrix metalloproteinase 2 and 9 levels, as indicators of metastasis, decreased. While LPO and CAT levels increased in all treatment groups, it was observed that the activity of SOD decreased. When TEM micrographs were investigated, cellular damages were determined. In the light of these results, it can be said that cisplatin and jaceosidin have a potential to increase the effects of each other synergistically.
Collapse
Affiliation(s)
- Pinar Bayram
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Selina Aksak Karamese
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Bengul Özdemir
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Aysegul Durak
- Faculty of Medicine, Departments of Biophysics, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Faculty of Medicine, Department of Histology-Embryology, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|