1
|
Costa WK, da Cruz RCD, da Silva Carvalho K, de Souza IA, Dos Santos Correia MT, de Oliveira AM, da Silva MV. Insecticidal activity of essential oil from leaves of Eugenia stipitata McVaugh against Aedes aegypti. Parasitol Int 2024; 98:102820. [PMID: 37884077 DOI: 10.1016/j.parint.2023.102820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/30/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Aedes aegypti, a mosquito, is responsible for the spread of many diseases, including dengue, zika, and chikungunya. However, due to this mosquito's developed resistance to conventional pesticides, effectively controlling it has proven to be challenging. This study aimed to evaluate the insecticidal potential of the essential oil from the leaves of Eugenia stipitata against Ae. aegypti, offering a natural and sustainable alternative for mosquito control. Tests were conducted using third-stage larvae to evaluate larvicidal activity and pupae collected up to 14 h after transformation to investigate pupicidal activity. Throughout the bioassays, the organisms were exposed to various essential oil concentrations. The findings demonstrated that the essential oil of E. stipitata exhibited larvicidal action, resulting in 100% larval mortality after 24 h and an LC50 value of 0.34 mg/mL. The effectiveness of essential oil as a pupicidal agent was also demonstrated by its LC50 value of 2.33 mg/mL and 100% larval mortality in 24 h. It can be concluded that the essential oil of E. stipitata holds promise as a natural pest control agent. Its use may reduce the reliance on conventional chemical pesticides, providing a more sustainable and effective strategy to combat diseases spread by mosquitoes.
Collapse
Affiliation(s)
- Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil.
| | | | | | - Ivone Antonia de Souza
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | | | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| |
Collapse
|
2
|
Souza ZN, Córdula CR, Cavalcanti IMF. The potential usage of Caatinga natural products against multi-drug-resistant bacteria. Fitoterapia 2024; 172:105752. [PMID: 37981022 DOI: 10.1016/j.fitote.2023.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
New sources of antibacterial drugs have become urgent with increasing bacterial resistance. Medicinal plants are attractive sources for antimicrobial compounds with fewer side effects and cheaper obtention. Brazil contains six biomes, including Caatinga, a semi-arid tropical vegetation exclusively from Brazil that contains over thousand vascular plant species. This review presents the potential of using Caatinga plant products to treat multidrug-resistant bacteria. This review used the keywords of antimicrobial resistance, resistance profile, multidrug resistance, Caatinga biome, and pathogenic bacteria to search in Scientific Electronic Library Online, the U.S. National Library of Medicine, and Google Scholar. Plant species as Schinopsis brasiliensis Engl., Annona vepretorum Mart., Croton pulegioides Baill., Myracrondruon urundeuva Allemo, Cereus jamacaru DC., Opuntia ficus-indica L., Bauhinia forficata L., Eucalyptus globulus, Croton sonderianus Muell. Arg., Campomanesia pubescens, and Abarema cochliacarpos showed bacteriostatic activity. Encholirium spectabile Mart., Hymenaea courbaril L., Neoglaziovia variegata Mez, Selaginella convoluta Spring, Encholirium spectabile Mart., Bromelia laciniosa Mart., Hymenaea martiana, Commiphora leptophloeos, and Mimosa tenuiflora presented bactericidal activity. Those extracts inhibited clinical-importance bacteria, such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Therefore, Caatinga biome plants are a valuable source of active biomolecules against pathogenic bacteria, and their therapeutic potential must be further explored.
Collapse
Affiliation(s)
- Zion N Souza
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | - Carolina R Córdula
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | - Isabella M F Cavalcanti
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil; Federal University of Pernambuco (UFPE), Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
3
|
Dos Santos de Moraes PG, da Silva Santos IB, Silva VBG, Dede Oliveira FariasAguiar JCR, do Amaral Ferraz Navarro DM, de Oliveira AM, Dos Santos Correia MT, Costa WK, da Silva MV. Essential oil from leaves of Myrciaria floribunda (H. West ex Willd.) O. Berg has antinociceptive and anti-inflammatory potential. Inflammopharmacology 2023; 31:3143-3151. [PMID: 37498376 DOI: 10.1007/s10787-023-01300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Myrciaria floribunda is a plant that is distributed across different Brazilian biomes such as the Amazon, Caatinga, Cerrado, and Atlantic Forest, and it possesses antioxidant, antimicrobial, and anticancer properties. The antinociceptive and anti-inflammatory properties of the essential oil from M. floribunda leaves (MfEO) were examined in this study using mouse models. Gas chromatography-mass spectrometry was employed to describe the oil, and the results revealed that δ-cadinene, bicyclogermacrene, α-cadinol, and epi-α-muurolol predominated in the chemical profile. The oil stimulated a decrease in nociception in the chemical and thermal models used to evaluate acute antinociceptive activity. Findings from the use of pain pathway blockers to study the presumed underlying mechanism indicated opioid pathway activity. The anti-edematogenic effect, decreased cell migration, and generation of pro-inflammatory cytokines provided evidence of the anti-inflammatory potential of the essential oil from M. floribunda. According to this research, the essential oil from M. floribunda can effectively alleviate acute pain and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wêndeo Kennedy Costa
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| |
Collapse
|
4
|
Yang X, Yang J, Gu X, Tao Y, Ji H, Miao X, Shen S, Zang H. (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in non-small cell lung cancer. Mol Cell Biochem 2023; 478:1611-1620. [PMID: 36441354 PMCID: PMC10209243 DOI: 10.1007/s11010-022-04613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
(-)-Guaiol is a sesquiterpenoid found in many traditional Chinese medicines with potent antitumor activity. However, its therapeutic effect and mechanism in non-small cell lung cancer (NSCLC) have not been fully elucidated. In this study, (-)-Guaiol was found to induce immunogenic cell death (ICD) in NSCLC in vitro. Using (-)-Guaiol in vivo, we found that (-)-Guaiol could suppress tumor growth, increase dendritic cell activation, and enhance T-cell infiltration. Vaccination experiments suggest that cellular immunoprophylaxis after (-)-Guaiol intervention can suppress tumor growth. Previous studies have found that (-)-Guaiol induces apoptosis and autophagy in NSCLC. Apoptosis and autophagy are closely related to ICD. To explore whether autophagy and apoptosis are involved in (-)-Guaiol-induced ICD, we used inhibitors of apoptosis and autophagy. The results showed that the release of damage-associated molecular patterns (DAMPs) was partly reversed after inhibition of apoptosis and autophagy. In conclusion, these results suggested that the (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in NSCLC.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Xiaoxia Gu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Yuhua Tao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Hongjuan Ji
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Xian Miao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Shuijie Shen
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Haiyang Zang
- Department of Spleen and Stomach, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| |
Collapse
|
5
|
Prospecting Plant Extracts and Bioactive Molecules with Antimicrobial Activity in Brazilian Biomes: A Review. Antibiotics (Basel) 2023; 12:antibiotics12030427. [PMID: 36978294 PMCID: PMC10044579 DOI: 10.3390/antibiotics12030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial resistance is currently one of the greatest threats to global health, food security, and development. In this aspect, medicinal plants have been studied to support the development of viable alternatives to prevent and treat infectious diseases. This study aimed to perform a review of the literature comprising the antimicrobial activity of vegetable species from Brazilian biomes. We selected 67 original scientific publications about extracts, fractions, or isolated molecules from plants in the Brazilian biomes, published between 2016 and 2020 in Pubmed, ScienceDirect, and Scielo. Data demonstrated that 98 plant species, especially collected in the Cerrado, Atlantic Forest, and Caatinga biomes, were tested against 40 fungi and 78 bacterial strains. Bioactive fractions of Eucalyptus globulus methanolic stump wood extract were active against Candida albicans and C. tropicalis (MIC 2.50 µg/mL). The catechin purified from Banisteriopsis argyrophylla leaves had activity against C. glabrata (MIC 2.83 µg/mL) and ethanolic extract obtained from Caryocar coriaceum bark and fruit pulp exhibited MIC of 4.1 µg/mL on Microsporum canis. For bacteria, compounds isolated from the dichloromethane extract of Peritassa campestris, lectin extracted from a saline extract of Portulaca elatior and essential oils of Myrciaria pilosa exhibited significant effect against Bacillus megaterium (MIC 0.78 µg/mL), Pseudomonas aeruginosa (MIC 4.06 µg/mL) and Staphylococcus aureus strains (MIC 5.0 µg/mL), respectively. The findings support the antimicrobial and bioeconomic potential of plants from Brazilian biodiversity and their promising health applications.
Collapse
|
6
|
de Lima Silva ID, de Almeida Nascimento JA, de Moraes Filho LEPT, Caetano VF, de Andrade MF, de Almeida YMB, Hallwass F, Brito AMSS, Vinhas GM. Production of potential antioxidant and antimicrobial active films of poly (vinyl alcohol) incorporated with cashew tree extract. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Fernando Hallwass
- Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
| | | | - Glória Maria Vinhas
- Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| |
Collapse
|
7
|
Chemical Composition and Variability of the Volatile Components of Myrciaria Species Growing in the Amazon Region. Molecules 2022; 27:molecules27072234. [PMID: 35408634 PMCID: PMC9000723 DOI: 10.3390/molecules27072234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Myrciaria (Myrtaceae) species have been well investigated due to their chemical and biological relevance. The present work aimed to carry out the chemotaxonomic study of essential oils of the species M. dubia, M. floribunda, and M. tenella, sampled in the Brazilian Amazon and compare them with the volatile compositions from other Myrciaria species reported to Brazil and Colombia. The leaves of six Myrciaria specimens were collected (PA, Brazil) during the dry season, and their chemical compositions were analyzed by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID). The main compounds identified in the essential oils were monoterpenes with pinane and menthane skeletons, followed by sesquiterpenes with caryophyllane and cadinane skeletons. Among the sampled Myrciaria specimens, five chemical profiles were reported for the first time: profile I (M. dubia, α-pinene, 54.0-67.2%); profile II (M. floribunda, terpinolene 23.1%, α-phellandrene 17.7%, and γ-terpinene 8.7%); profile III (M. floribunda, γ-cadinene 17.5%, and an unidentified oxygenated sesquiterpene 15.0%); profile IV (M. tenella, E-caryophyllene 43.2%, and α-humulene 5.3%); and profile V (M. tenella, E-caryophyllene 19.1%, and caryophyllene oxide 41.1%). The Myrciaria chemical profiles showed significant variability in extraction methods, collection sites, plant parts, and genetic aspects.
Collapse
|