1
|
Rakshit S, More A, Gaikwad S, Seniya C, Gade A, Muley VY, Mukherjee A, Kamble K. Role of diosgenin extracted from Helicteres isora L in suppression of HIV-1 replication: An in vitro preclinical study. Heliyon 2024; 10:e24350. [PMID: 38288021 PMCID: PMC10823083 DOI: 10.1016/j.heliyon.2024.e24350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Background Diosgenin, an essential sapogenin steroid with significant biological implications, is composed of a hydrophilic sugar moiety intricately linked to a hydrophobic steroid aglycone. While the antiviral properties of diosgenin against numerous RNA viruses have been extensively documented, its potential in combating Human Immunodeficiency Virus infections remains unexplored. Experimental procedure This current investigation presents a comprehensive and systematic analysis of extracts derived from the leaves of Helicteres isora, which are notably enriched with diosgenin. Rigorous methodologies, including established chromatographic techniques and Fourier-transform infrared spectroscopy were employed for the characterization of the active diosgenin compound followed by molecular interaction analyses with the key HIV enzymes and mechanistic validation of HIV inhibition. Key results The inhibitory effects of extracted diosgenin on the replication of HIV-1 were demonstrated using a permissive cellular system, encompassing two distinct subtypes of HIV-1 strains. Computational analyses involving molecular interactions highlighted the substantial occupancy of critical active site pocket residues within the key HIV-1 proteins by diosgenin. Additionally, the mechanistic underpinnings of diosgenin activity in conjunction with standard controls were elucidated through specialized colorimetric assays, evaluating its impact on HIV-1 Reverse Transcriptase and Integrase enzymes. Conclusions To our current state of knowledge, this study represents the inaugural demonstration of the anti-HIV efficacy inherent to diosgenin found in the leaves of Helicteres isora, and can be taken further for drug design and development for the management of HIV infection.
Collapse
Affiliation(s)
- Smita Rakshit
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| | - Ashwini More
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Shraddha Gaikwad
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Chandrabhan Seniya
- VIT Bhopal University, School of Biosciences, Engineering and Technology, Bhopal, MP, India
| | - Aniket Gade
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, MH, India
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, MH, India
| | | | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune, MH, India
| | - Kapil Kamble
- Department of Microbiology, Sant Gadge Baba Amravati University, Amravati, MH, India
| |
Collapse
|
2
|
Kawakami S, Otsuka H. Crotofolanes, rearranged crotoforanes, and a novel diterpene: isocrotofolane from Croton cascarilloides, collected in Okinawa. J Nat Med 2023; 77:421-429. [PMID: 37083998 DOI: 10.1007/s11418-023-01698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
To this day, since about 50% of all medicines are derived from natural sources, natural product chemistry, especially the search for biologically active natural components, remains extremely important (Newman and Cragg in J Nat Prod 83:770-803, 2020). In this review, we deal with our continuing research work for promising constituents from plants collected in the Ryukyu Archipelago. The isolation of islands in the archipelago by the sea or by straits gives rise to endemic plant species that are unique to the islands. The structural diversity of the constituents produced by this unique flora is of great scientific interest in various aspects, including chemical structures, biosynthesis, and biological activities. The components from this structural diversity have great potential as new pharmaceutical seeds. In our continuing studies, we have successfully investigated new but extremely unusual diterpenoids: crotofolanes and their rearranged varieties (nor-crotofolane, trinor-crotofolane, neocrotofolane) and a glycoside with a new skeletal diterpenoid (isocrotofolane glucoside) from Croton cascarilloides. This review summarizes our reports on the investigation of crotofolanes as well as those on crotofolanes by other research groups.
Collapse
Affiliation(s)
- Susumu Kawakami
- Department of Natural Products Chemistry, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153, Japan.
| | - Hideaki Otsuka
- Department of Natural Products Chemistry, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima, 731-0153, Japan
| |
Collapse
|
3
|
Mahambo E, Uwamariya C, Miah M, Clementino LDC, Alvarez LCS, Di Santo Meztler GP, Trybala E, Said J, Wieske LHE, Ward JS, Rissanen K, Munissi JJE, Costa FTM, Sunnerhagen P, Bergström T, Nyandoro SS, Erdelyi M. Crotofolane Diterpenoids and Other Constituents Isolated from Croton kilwae. JOURNAL OF NATURAL PRODUCTS 2023; 86:380-389. [PMID: 36749598 PMCID: PMC9972476 DOI: 10.1021/acs.jnatprod.2c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 06/18/2023]
Abstract
Six new crotofolane diterpenoids (1-6) and 13 known compounds (7-19) were isolated from the MeOH-CH2Cl2 (1:1, v/v) extracts of the leaves and stem bark of Croton kilwae. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and mass spectrometric data. The structure of crotokilwaepoxide A (1) was confirmed by single-crystal X-ray diffraction, allowing for the determination of its absolute configuration. The crude extracts and the isolated compounds were investigated for antiviral activity against respiratory syncytial virus (RSV) and human rhinovirus type-2 (HRV-2) in HEp-2 and HeLa cells, respectively, for antibacterial activity against the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli, and for antimalarial activity against the Plasmodium falciparum Dd2 strain. ent-3β,19-Dihydroxykaur-16-ene (7) and ayanin (16) displayed anti-RSV activities with IC50 values of 10.2 and 6.1 μM, respectively, while exhibiting only modest cytotoxic effects on HEp-2 cells that resulted in selectivity indices of 4.9 and 16.4. Compounds 2 and 5 exhibited modest anti-HRV-2 activity (IC50 of 44.6 μM for both compounds), while compound 16 inhibited HRV-2 with an IC50 value of 1.8 μM. Compounds 1-3 showed promising antiplasmodial activities (80-100% inhibition) at a 50 μM concentration.
Collapse
Affiliation(s)
- Emanuel
T. Mahambo
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Colores Uwamariya
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Masum Miah
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Leandro da Costa Clementino
- Laboratory
of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, Institute of
Biology (IB), University of Campinas - UNICAMP, Campinas, 13083-970 SP, Brazil
| | - Luis Carlos Salazar Alvarez
- Laboratory
of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, Institute of
Biology (IB), University of Campinas - UNICAMP, Campinas, 13083-970 SP, Brazil
| | - Gabriela Paula Di Santo Meztler
- Department
of Chemistry and Molecular Biology and Centre for Antibiotic Resistance
Research (CARe), University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Edward Trybala
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Joanna Said
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Lianne H. E. Wieske
- Department
of Chemistry − BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Jas S. Ward
- Department
of Chemistry, University of Jyvaskyla, Survontie 9B, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department
of Chemistry, University of Jyvaskyla, Survontie 9B, 40014 Jyväskylä, Finland
| | - Joan J. E. Munissi
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Fabio T. M. Costa
- Laboratory
of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, Institute of
Biology (IB), University of Campinas - UNICAMP, Campinas, 13083-970 SP, Brazil
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology and Centre for Antibiotic Resistance
Research (CARe), University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tomas Bergström
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Stephen S. Nyandoro
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Mate Erdelyi
- Department
of Chemistry − BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|