1
|
Zhang R, Xu H, Zhang X, Xiong H, Tang F, Lv L, Mu X, Tian W, Cheng Y, Lu J, Nie X, Guo Y, Liu Y, Zhang Z, Lin L. The Clinical Application Value of a Novel Chip in the Detection of Pathogens in Adult Pneumonia: A Multi-Centre Prospective Study in China. Infect Drug Resist 2024; 17:4843-4852. [PMID: 39524976 PMCID: PMC11549882 DOI: 10.2147/idr.s483256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose The detection of pathogenic microorganisms plays a significant role in the diagnosis and management of pneumonia that are responsible for a substantial number of deaths worldwide. However, conventional microbiological tests (CMT) have low accuracy and are time-consuming. In this study, we aim to evaluate the clinical value of Chips for Complicated Infection Detection (CCID) in detecting pneumonia pathogens. Patients and Methods This study was conducted at nine hospitals in China from January 2021 to September 2022. Respiratory samples from adult pneumonia patients were collected from each patient. CMT and CCID were performed in parallel to identify the pathogens. Results A total of 245 patients were included, with 73% being elderly. CCID identified pathogenic microbes in 78.0% of patients and conventional microbiological tests (CMT) in 57.1% of the patients (p<0.001). The overall positive and negative percent agreements between CCID and CMT for pathogen detection were 90.07% and 38.46%, respectively. 38.8% of patients were diagnosed with mixed infections with at least two pathogens by CCID. Bacterial infections identified by CCID accounted for 60.0% of 245 patients, with the top 3 being Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterococcus faecium, respectively. K. pneumoniae was the most common pathogen in elderly patients, with a significantly higher prevalence compared to non-elderly patients (p = 0.0011). Among the 197 patients who had used antibiotics before sample collection, the positive rate of CCID was significantly higher than that of CMT (p < 0.001). Conclusion This study indicates that compared to CMT, this novel chip has significant advantages in detecting pathogens in pneumonia patients, especially in the elderly.
Collapse
Affiliation(s)
- Ruixue Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing, People’s Republic of China
| | - Hui Xu
- Department of Geriatrics, Peking University First Hospital, Beijing, People’s Republic of China
| | - Xiaoxue Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing, People’s Republic of China
| | - Hui Xiong
- Department of Emergency, Peking University First Hospital, Beijing, People’s Republic of China
| | - Fei Tang
- Department of Interventional Pulmonology, Anhui Province Chest Hospital, Hefei, People’s Republic of China
| | - Liping Lv
- Department of Interventional Pulmonology, Anhui Province Chest Hospital, Hefei, People’s Republic of China
| | - Xiangdong Mu
- Department of Respiratory, Tsinghua Changgung Hospital, Beijing, People’s Republic of China
| | - Wei Tian
- Department of Geriatrics, Jishuitan Hospital, Beijing, People’s Republic of China
| | - Yueguang Cheng
- Department of Emergency, Jingmei Group General Hospital, Beijing, People’s Republic of China
| | - JianRong Lu
- Department of Emergency, Jingmei Group General Hospital, Beijing, People’s Republic of China
| | - Xiuhong Nie
- Department of Respiratory, Xuanwu Hospital, Beijing, People’s Republic of China
| | - Yang Guo
- Department of Endoscopic Diagnosis &treatment, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yingying Liu
- CapitalBio Technology Co., Ltd, Beijing, People’s Republic of China
| | - Zhi Zhang
- Bio Biological Group Co., Ltd, Beijing, People’s Republic of China
| | - Lianjun Lin
- Department of Geriatrics, Peking University First Hospital, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Zhang L, Cai M, Zhang X, Wang S, Pang L, Chen X, Zheng C, Sun Y, Liang Y, Guo S, Wei F, Zhang Y. Integrated analysis of microbiome and host transcriptome unveils correlations between lung microbiota and host immunity in bronchoalveolar lavage fluid of pneumocystis pneumonia patients. Microbes Infect 2024; 26:105374. [PMID: 38849069 DOI: 10.1016/j.micinf.2024.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE The lung microbiota of patients with pulmonary diseases is disrupted and impacts the immunity. The microbiological and immune landscape of the lungs in patients with pneumocystis pneumonia (PCP) remains poorly understood. METHODS Multi-omics analysis and machine learning were performed on bronchoalveolar lavage fluid to explore interaction between the lung microbiota and host immunity in PCP. Then we constructed a diagnostic model using differential genes with LASSO regression and validated by qPCR. The immune infiltration analysis was performed to explore the landscape of lung immunity in patients with PCP. RESULTS Patients with PCP showed a low alpha diversity of lung microbiota, accompanied by the elevated abundance of Firmicutes, and the differential expressed genes (DEGs) analysis displayed a downregulation of MAPK signaling. The MAPK10, TGFB1, and EFNA3 indicated a potential to predict PCP (AUC = 0.86). The lung immune landscape in PCP showed the lower levels of naïve CD4+ T cells and activated dendritic cells. The correlation analysis of the MAPK signaling pathway-related DEGs and the differential microorganisms at the level of phylum showed that the Firmicutes was negatively correlated with these DEGs. CONCLUSION We profiled the characteristics of lung microbiota and immune landscape in PCP, which may contribute to elucidating the mechanism of PCP.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Sitong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lijun Pang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China
| | - Caopei Zheng
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Ying Liang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing Key Laboratory for HIV/AIDS Research, Beijing, 100069, China; Laboratory for Clinical Medicine, Capital Medical University, China; Beijing Research Center for Respiratory Infectious Diseases, China.
| |
Collapse
|
3
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
4
|
Li Y, Zhao R, Zhang M, Shen K, Hou X, Liu B, Li C, Sun B, Xiang M, Lin J. Xingbei antitussive granules ameliorate cough hypersensitivity in post-infectious cough guinea pigs by regulating tryptase/PAR2/TRPV1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117243. [PMID: 37777025 DOI: 10.1016/j.jep.2023.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xingbei antitussive granules (XB) is a classic Chinese Medicine prescription for treating post-infectious cough(PIC), based on the Sanao Decoction from Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and Jiegeng decoction from Essentials of the Golden Chamber in the Han Dynasty. However, the therapeutic effects and pharmacological mechanisms are still ambiguous. In the present study, we endeavored to elucidate these underlying mechanisms. AIMS OF THE STUDY This study aimed to explore the potential impact and mechanism of XB on PIC, and provide a scientific basis for its clinical application. MATERIALS AND METHODS Cigarette smoking (CS) combined with lipopolysaccharide (LPS) nasal drops were administered to induce the PIC guinea pig with cough hypersensitivity status. Subsequently, the model guinea pigs were treated with XB and the cough frequency was observed by the capsaicin cough provocation test. The pathological changes of lung tissue were assessed by HE staining, and the levels of inflammatory mediators, mast cell degranulating substances, and neuropeptides were detected. The protein and mRNA expression of transient receptor potential vanilloid type 1(TRPV1), proteinase-activated receptor2(PAR2), and protein kinase C (PKC) were measured by Immunohistochemical staining, Western blot, and RT-qPCR. Changes in the abundance and composition of respiratory bacterial microbiota were determined by 16S rRNA sequencing. RESULTS After XB treatment, the model guinea pigs showed a dose-dependent decrease in cough frequency, along with a significant alleviation in inflammatory infiltration of lung tissue and a reduction in inflammatory mediators. In addition, XB high-dose treatment significantly decreased the levels of mast cell Tryptase as well as β-hexosaminidase (β-Hex) and downregulated the expression of TRPV1, PAR2, and p-PKC. Simultaneously, levels of neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and nerve growth factor (NGF) were improved. Besides, XB also can modulate the structure of respiratory bacterial microbiota and restore homeostasis. CONCLUSION XB treatment alleviates cough hypersensitivity and inflammatory responses, inhibits the degranulation of mast cells, and ameliorates neurogenic inflammation in PIC guinea pigs whose mechanism may be associated with the inhibition of Tryptase/PAR2/PKC/TRPV1 and the recovery of respiratory bacterial microbiota.
Collapse
Affiliation(s)
- Yun Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Ruiheng Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Mengyuan Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Kunlu Shen
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Xin Hou
- Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Bowen Liu
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Chunxiao Li
- Graduate School of Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100-730, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Min Xiang
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100-029, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| | - Jiangtao Lin
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100-029, China.
| |
Collapse
|
5
|
Zhang Y, Chen X, Wang Y, Li L, Ju Q, Zhang Y, Xi H, Wang F, Qiu D, Liu X, Chang N, Zhang W, Zhang C, Wang K, Li L, Zhang J. Alterations of lower respiratory tract microbiome and short-chain fatty acids in different segments in lung cancer: a multiomics analysis. Front Cell Infect Microbiol 2023; 13:1261284. [PMID: 37915846 PMCID: PMC10617678 DOI: 10.3389/fcimb.2023.1261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The lower respiratory tract microbiome is widely studied to pinpoint microbial dysbiosis of diversity or abundance that is linked to a number of chronic respiratory illnesses. However, it is vital to clarify how the microbiome, through the release of microbial metabolites, impacts lung health and oncogenesis. Methods In order to discover the powerful correlations between microbial metabolites and disease, we collected, under electronic bronchoscopy examinations, samples of paired bronchoalveolar lavage fluids (BALFs) from tumor-burden lung segments and ipsilateral non-tumor sites from 28 lung cancer participants, further performing metagenomic sequencing, short-chain fatty acid (SCFA) metabolomics, and multiomics analysis to uncover the potential correlations of the microbiome and SCFAs in lung cancer. Results In comparison to BALFs from normal lung segments of the same participant, those from lung cancer burden lung segments had slightly decreased microbial diversity in the lower respiratory tract. With 18 differentially prevalent microbial species, including the well-known carcinogens Campylobacter jejuni and Nesseria polysaccharea, the relative species abundance in the lower respiratory tract microbiome did not significantly differ between the two groups. Additionally, a collection of commonly recognized probiotic metabolites called short-chain fatty acids showed little significance in either group independently but revealed a strong predictive value when using an integrated model by machine learning. Multiomics also discovered particular species related to SCFAs, showing a positive correlation with Brachyspira hydrosenteriae and a negative one with Pseudomonas at the genus level, despite limited detection in lower airways. Of note, these distinct microbiota and metabolites corresponded with clinical traits that still required confirmation. Conclusions Further analysis of metagenome functional capacity revealed that genes encoding environmental information processing and metabolism pathways were enriched in the lower respiratory tract metagenomes of lung cancer patients, further supporting the oncogenesis function of various microbial species by different metabolites. These findings point to a potent relationship between particular components of the integrated microbiota-metabolites network and lung cancer, with implications for screening and diagnosis in clinical settings.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Xiangxiang Chen
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine of Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Pediatrics, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Qing Ju
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Hangtian Xi
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Fahan Wang
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Dan Qiu
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Xingchen Liu
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ning Chang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Weiqi Zhang
- Department of Radiology, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Cong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| |
Collapse
|
6
|
Vientós‐Plotts AI, Ericsson AC, Reinero CR. The respiratory microbiota and its impact on health and disease in dogs and cats: A One Health perspective. J Vet Intern Med 2023; 37:1641-1655. [PMID: 37551852 PMCID: PMC10473014 DOI: 10.1111/jvim.16824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Healthy lungs were long thought of as sterile, with presence of bacteria identified by culture representing contamination. Recent advances in metagenomics have refuted this belief by detecting rich, diverse, and complex microbial communities in the healthy lower airways of many species, albeit at low concentrations. Although research has only begun to investigate causality and potential mechanisms, alterations in these microbial communities (known as dysbiosis) have been described in association with inflammatory, infectious, and neoplastic respiratory diseases in humans. Similar studies in dogs and cats are scarce. The microbial communities in the respiratory tract are linked to distant microbial communities such as in the gut (ie, the gut-lung axis), allowing interplay of microbes and microbial products in health and disease. This review summarizes considerations for studying local microbial communities, key features of the respiratory microbiota and its role in the gut-lung axis, current understanding of the healthy respiratory microbiota, and examples of dysbiosis in selected respiratory diseases of dogs and cats.
Collapse
Affiliation(s)
- Aida I. Vientós‐Plotts
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| | - Aaron C. Ericsson
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- University of Missouri Metagenomics CenterUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Carol R. Reinero
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
7
|
Kumar D, Pandit R, Sharma S, Raval J, Patel Z, Joshi M, Joshi CG. Nasopharyngeal microbiome of COVID-19 patients revealed a distinct bacterial profile in deceased and recovered individuals. Microb Pathog 2022; 173:105829. [PMID: 36252893 PMCID: PMC9568276 DOI: 10.1016/j.micpath.2022.105829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The bacterial co-infections in SARS-CoV-2 patients remained the least explored subject of clinical manifestations that may also determine the disease severity. Nasopharyngeal microbial community structure within SARS-CoV-2 infected patients could reveal interesting microbiome dynamics that may influence the disease outcomes. Here, in this research study, we analyzed distinct nasopharyngeal microbiome profile in the deceased (n = 48) and recovered (n = 29) COVID-19 patients and compared it with control SARS-CoV-2 negative individuals (control) (n = 33). The nasal microbiome composition of the three groups varies significantly (PERMANOVA, p-value <0.001), where deceased patients showed higher species richness compared to the recovered and control groups. Pathogenic genera, including Corynebacterium (LDA score 5.51), Staphylococcus, Serratia, Klebsiella and their corresponding species were determined as biomarkers (p-value <0.05, LDA cutoff 4.0) in the deceased COVID-19 patients. Ochrobactrum (LDA score 5.79), and Burkholderia (LDA 5.29), were found in the recovered group which harbors ordinal bacteria (p-value <0.05, LDA-4.0) as biomarkers. Similarly, Pseudomonas (LDA score 6.19), and several healthy nasal cavity commensals including Veillonella, and Porphyromonas, were biomarkers for the control individuals. Healthy commensal bacteria may trigger the immune response and alter the viral infection susceptibility and thus, may play important role and possible recovery that needs to be further explored. This research finding provide vital information and have significant implications for understanding the microbial diversity of COVID-19 patients. However, additional studies are needed to address the microbiome-based therapeutics and diagnostics interventions.
Collapse
Affiliation(s)
- Dinesh Kumar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Janvi Raval
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Zarna Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, 6th Floor, MS Building, Gandhinagar, 382011, India.
| |
Collapse
|
8
|
Arnold HK, Hanselmann R, Duke SM, Sharpton TJ, Beechler BR. Chronic clinical signs of upper respiratory tract disease associate with gut and respiratory microbiomes in a cohort of domestic felines. PLoS One 2022; 17:e0268730. [PMID: 36454958 PMCID: PMC9714858 DOI: 10.1371/journal.pone.0268730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Feline upper respiratory tract disease (FURTD), often caused by infections etiologies, is a multifactorial syndrome affecting feline populations worldwide. Because of its highly transmissible nature, infectious FURTD is most prevalent anywhere cats are housed in groups such as animal shelters, and is associated with negative consequences such as decreasing adoption rates, intensifying care costs, and increasing euthanasia rates. Understanding the etiology and pathophysiology of FURTD is thus essential to best mitigate the negative consequences of this disease. Clinical signs of FURTD include acute respiratory disease, with a small fraction of cats developing chronic sequelae. It is thought that nasal mucosal microbiome changes play an active role in the development of acute clinical signs, but it remains unknown if the microbiome may play a role in the development and progression of chronic clinical disease. To address the knowledge gap surrounding how microbiomes link to chronic FURTD, we asked if microbial community structure of upper respiratory and gut microbiomes differed between cats with chronic FURTD signs and clinically normal cats. We selected 8 households with at least one cat exhibiting chronic clinical FURTD, and simultaneously collected samples from cohabitating clinically normal cats. Microbial community structure was assessed via 16S rDNA sequencing of both gut and nasal microbiome communities. Using a previously described ecophylogenetic method, we identified 136 and 89 microbial features within gut and nasal microbiomes respectively that significantly associated with presence of active FURTD clinical signs in cats with a history of chronic signs. Overall, we find that nasal and gut microbial community members associate with the presence of chronic clinical course, but more research is needed to confirm our observations.
Collapse
Affiliation(s)
- Holly Kristin Arnold
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Rhea Hanselmann
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Sarah M. Duke
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Brianna R. Beechler
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
9
|
Zhang Z, Yu W, Li G, He Y, Shi Z, Wu J, Ma X, Zhu Y, Zhao L, Liu S, Wei Y, Xue J, Guo S, Gao Z. Characteristics of oral microbiome of healthcare workers in different clinical scenarios: a cross-sectional analysis. BMC Oral Health 2022; 22:481. [PMID: 36357898 PMCID: PMC9648452 DOI: 10.1186/s12903-022-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
The environment of healthcare institutes (HCIs) potentially affects the internal microecology of medical workers, which is reflected not only in the well-studied gut microbiome but also in the more susceptible oral microbiome. We conducted a prospective cross-sectional cohort study in four hospital departments in Central China. Oropharyngeal swabs from 65 healthcare workers were collected and analyzed using 16S rRNA gene amplicon sequencing. The oral microbiome of healthcare workers exhibited prominent deviations in diversity, microbial structure, and predicted function. The coronary care unit (CCU) samples exhibited robust features and stability, with significantly higher abundances of genera such as Haemophilus, Fusobacterium, and Streptococcus, and a lower abundance of Prevotella. Functional prediction analysis showed that vitamin, nucleotide, and amino acid metabolisms were significantly different among the four departments. The CCU group was at a potential risk of developing periodontal disease owing to the increased abundance of F. nucleatum. Additionally, oral microbial diversification of healthcare workers was related to seniority. We described the oral microbiome profile of healthcare workers in different clinical scenarios and demonstrated that community diversity, structure, and potential functions differed markedly among departments. Intense modulation of the oral microbiome of healthcare workers occurs because of their original departments, especially in the CCU.
Collapse
Affiliation(s)
- Zhixia Zhang
- Nursing Department, Linfen Central Hospital, 041000 Shanxi, Shanxi China
| | - Wenyi Yu
- grid.411634.50000 0004 0632 4559Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Guangyao Li
- Science and Education Department, Linfen Central Hospital, Hainan, Shanxi China
| | - Yukun He
- grid.411634.50000 0004 0632 4559Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Zhiming Shi
- Cardiology Department, Linfen Central Hospital, Hainan, Shanxi China
| | - Jing Wu
- Nursing Department, Linfen Central Hospital, 041000 Shanxi, Shanxi China
| | - Xinqian Ma
- grid.411634.50000 0004 0632 4559Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Yu Zhu
- Science and Education Department, Linfen Central Hospital, Hainan, Shanxi China
| | - Lili Zhao
- grid.411634.50000 0004 0632 4559Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Siqin Liu
- grid.440653.00000 0000 9588 091XThe Stomatology College of Binzhou Medical University, Yantai, Shandong China
| | - Yue Wei
- grid.263452.40000 0004 1798 4018Nursing College of Shanxi Medical University, Shanxi, China
| | - Jianbo Xue
- grid.411634.50000 0004 0632 4559Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Shuming Guo
- Nursing Department, Linfen Central Hospital, 041000 Shanxi, Shanxi China
| | - Zhancheng Gao
- grid.411634.50000 0004 0632 4559Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China ,grid.411634.50000 0004 0632 4559Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, 100044 Beijing, China
| |
Collapse
|
10
|
Zhou Y, Zhao X, Zhang M, Feng J. Gut microbiota dysbiosis exaggerates ammonia-induced tracheal injury Via TLR4 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114206. [PMID: 36272174 DOI: 10.1016/j.ecoenv.2022.114206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 05/25/2023]
Abstract
Ammonia is a toxic air pollutant that causes severe respiratory tract injury in animals and humans. Gut microbiota dysbiosis has been found to be involved in the development of respiratory tract injury induced by air pollutants, however, the specific mechanism requires investigation. Here, we found that, inhaled ammonia induced tracheal injury by reducing expression of claudin-1, increasing expression of muc5ac, TLR4, MyD88, NF-κB and cytokines (TNF-α, IL-1β, IL-6 and IL-10), and also altering tracheal microbiota composition. Spearman correlation analysis indicated that gut microbiota dysbiosis positively correlated with TLR4 level in the trachea. Antibiotic depletion intestinal microbiota treatment reduced the severity of ammonia-induced tracheal injury via TLR4 signaling pathway. Microbiota transplantation induced the tracheal injury via TLR4 signaling pathway even without the ammonia exposure. These results indicate that gut microbiota dysbiosis exaggerates ammonia-induced tracheal injury via TLR4 signaling pathway. In addition, the [Ruminococcus]_torques_group, Faecalibacterium, unclassified_f_Lachnospiraceae may be the key gut microbiota contributing to the alterations of tracheal microbiota composition.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xin Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Xia X, Chen J, Cheng Y, Chen F, Lu H, Liu J, Wang L, Pu F, Wang Y, Liu H, Cao D, Zhang Z, Xia Z, Fan M, Ling Z, Zhao L. Comparative analysis of the lung microbiota in patients with respiratory infections, tuberculosis, and lung cancer: A preliminary study. Front Cell Infect Microbiol 2022; 12:1024867. [PMID: 36389135 PMCID: PMC9663837 DOI: 10.3389/fcimb.2022.1024867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Recent evidence suggests that lung microbiota can be recognized as one of the ecological determinants of various respiratory diseases. However, alterations in the lung microbiota and associated lung immunity in these respiratory diseases remain unclear. To compare the lung microbiota and lung immune profiles in common respiratory diseases, a total of 78 patients were enrolled in the present study, including 21 patients with primary pulmonary tuberculosis (PTB), eight patients with newly diagnosed lung cancer (LC), and 49 patients with community-acquired pneumonia (CAP). Bronchoalveolar lavage fluid (BALF) was collected for microbiota and cytokine analyses. With MiSeq sequencing system, increased bacterial alpha-diversity and richness were observed in patients with LC than in those with PTB and CAP. Linear discriminant analysis effect size revealed that CAP-associated pulmonary microbiota were significantly different between the PTB and LC groups. More key functionally different genera were found in the PTB and LC groups than in the CAP group. The interaction network revealed stronger positive and negative correlations among these genera in the LC group than in the other two groups. However, increased BALF cytokine profiles were observed in the PTB group than in the other two groups, while BALF cytokines were correlated with key functional bacteria. This comparative study provides evidence for the associations among altered lung microbiota, BALF inflammation, and different respiratory disorders, which provides insight into the possible roles and mechanisms of pulmonary microbiota in the progression of respiratory disorders.
Collapse
Affiliation(s)
- Xiaoxue Xia
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Jiang Chen
- Department of Neurosurgery, Changxing People’s Hospital, Huzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Feng Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huoquan Lu
- Department of Respiratory, Changxing People’s Hospital, Huzhou, China
| | - Jianfeng Liu
- Department of Respiratory, Changxing People’s Hospital, Huzhou, China
| | - Ling Wang
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Fengxia Pu
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Ying Wang
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Hua Liu
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Daxing Cao
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Zhengye Zhang
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Zeping Xia
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Meili Fan
- Department of Infectious Diseases, Changxing People’s Hospital, Huzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China,*Correspondence: Zongxin Ling, ; Longyou Zhao,
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China,*Correspondence: Zongxin Ling, ; Longyou Zhao,
| |
Collapse
|
12
|
Medeiros MM, Ingham AC, Nanque LM, Correia C, Stegger M, Andersen PS, Fisker AB, Benn CS, Lanaspa M, Silveira H, Abrantes P. Oral polio revaccination is associated with changes in gut and upper respiratory microbiomes of infants. Front Microbiol 2022; 13:1016220. [PMID: 36386704 PMCID: PMC9649904 DOI: 10.3389/fmicb.2022.1016220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
After the eradication of polio infection, the plan is to phase-out the live-attenuated oral polio vaccine (OPV). Considering the protective non-specific effects (NSE) of OPV on unrelated pathogens, the withdrawal may impact child health negatively. Within a cluster-randomized trial, we carried out 16S rRNA deep sequencing analysis of fecal and nasopharyngeal microbial content of Bissau–Guinean infants aged 4–8 months, before and after 2 months of OPV revaccination (revaccinated infants = 47) vs. no OPV revaccination (control infants = 47). The aim was to address changes in the gut and upper respiratory bacterial microbiotas due to revaccination. Alpha-diversity for both microbiotas increased similarly over time in OPV-revaccinated infants and controls, whereas greater changes over time in the bacterial composition of gut (padjusted < 0.001) and upper respiratory microbiotas (padjusted = 0.018) were observed in the former. Taxonomic analysis of gut bacterial microbiota revealed a decrease over time in the median proportion of Bifidobacterium longum for all infants (25–14.3%, p = 0.0006 in OPV-revaccinated infants and 25.3–11.6%, p = 0.01 in controls), compatible with the reported weaning. Also, it showed a restricted increase in the median proportion of Prevotella_9 genus in controls (1.4–7.1%, p = 0.02), whereas in OPV revaccinated infants an increase over time in Prevotellaceae family (7.2–17.4%, p = 0.005) together with a reduction in median proportion of potentially pathogenic/opportunistic genera such as Escherichia/Shigella (5.8–3.4%, p = 0.01) were observed. Taxonomic analysis of upper respiratory bacterial microbiota revealed an increase over time in median proportions of potentially pathogenic/opportunistic genera in controls, such as Streptococcus (2.9–11.8%, p = 0.001 and Hemophilus (11.3–20.5%, p = 0.03), not observed in OPV revaccinated infants. In conclusion, OPV revaccination was associated with a healthier microbiome composition 2 months after revaccination, based on a more abundant and diversified bacterial community of Prevotellaceae and fewer pathogenic/opportunistic organisms. Further information on species-level differentiation and functional analysis of microbiome content are warranted to elucidate the impact of OPV-associated changes in bacterial microbiota on child health.
Collapse
Affiliation(s)
- Márcia Melo Medeiros
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
- *Correspondence: Márcia Melo Medeiros,
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Line Møller Nanque
- Bandim Health Project, Bissau, Guinea-Bissau
- Bandim Health Project, Odense Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | | | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Paal Skyt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ane Baerent Fisker
- Bandim Health Project, Bissau, Guinea-Bissau
- Bandim Health Project, Odense Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital/University of Southern Denmark, Odense, Denmark
| | - Christine Stabell Benn
- Bandim Health Project, Bissau, Guinea-Bissau
- Bandim Health Project, Odense Patient Data Explorative Network, Institute of Clinical Research, Odense University Hospital/University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Miguel Lanaspa
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
| | - Henrique Silveira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
| | - Patrícia Abrantes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisboa, Portugal
| |
Collapse
|
13
|
Thornton CS, Acosta N, Surette MG, Parkins MD. Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. J Pediatric Infect Dis Soc 2022; 11:S13-S22. [PMID: 36069903 PMCID: PMC9451016 DOI: 10.1093/jpids/piac036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 01/02/2023]
Abstract
Chronic lower respiratory tract infections are a leading contributor to morbidity and mortality in persons with cystic fibrosis (pwCF). Traditional respiratory tract surveillance culturing has focused on a limited range of classic pathogens; however, comprehensive culture and culture-independent molecular approaches have demonstrated complex communities highly unique to each individual. Microbial community structure evolves through the lifetime of pwCF and is associated with baseline disease state and rates of disease progression including occurrence of pulmonary exacerbations. While molecular analysis of the airway microbiome has provided insight into these dynamics, challenges remain including discerning not only "who is there" but "what they are doing" in relation to disease progression. Moreover, the microbiome can be leveraged as a multi-modal biomarker for both disease activity and prognostication. In this article, we review our evolving understanding of the role these communities play in pwCF and identify challenges in translating microbiome data to clinical practice.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Parkins
- Corresponding Author: Michael D. Parkins, MD, MSc, FRCPC, Associate Professor, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. E-mail:
| |
Collapse
|
14
|
Rocafort M, Henares D, Brotons P, Launes C, Fernandez de Sevilla M, Fumado V, Barrabeig I, Arias S, Redin A, Ponomarenko J, Mele M, Millat-Martinez P, Claverol J, Balanza N, Mira A, Garcia-Garcia JJ, Bassat Q, Jordan I, Muñoz-Almagro C. Impact of COVID-19 Lockdown on the Nasopharyngeal Microbiota of Children and Adults Self-Confined at Home. Viruses 2022; 14:v14071521. [PMID: 35891502 PMCID: PMC9315980 DOI: 10.3390/v14071521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023] Open
Abstract
The increased incidence of COVID-19 cases and deaths in Spain in March 2020 led to the declaration by the Spanish government of a state of emergency imposing strict confinement measures on the population. The objective of this study was to characterize the nasopharyngeal microbiota of children and adults and its relation to SARS-CoV-2 infection and COVID-19 severity during the pandemic lockdown in Spain. This cross-sectional study included family households located in metropolitan Barcelona, Spain, with one adult with a previous confirmed COVID-19 episode and one or more exposed co-habiting child contacts. Nasopharyngeal swabs were used to determine SARS-CoV-2 infection status, characterize the nasopharyngeal microbiota and determine common respiratory DNA/RNA viral co-infections. A total of 173 adult cases and 470 exposed children were included. Overall, a predominance of Corynebacterium and Dolosigranulum and a limited abundance of common pathobionts including Haemophilus and Streptococcus were found both among adults and children. Children with current SARS-CoV-2 infection presented higher bacterial richness and increased Fusobacterium, Streptococcus and Prevotella abundance than non-infected children. Among adults, persistent SARS-CoV-2 RNA was associated with an increased abundance of an unclassified member of the Actinomycetales order. COVID-19 severity was associated with increased Staphylococcus and reduced Dolosigranulum abundance. The stringent COVID-19 lockdown in Spain had a significant impact on the nasopharyngeal microbiota of children, reflected in the limited abundance of common respiratory pathobionts and the predominance of Corynebacterium, regardless of SARS-CoV-2 detection. COVID-19 severity in adults was associated with decreased nasopharynx levels of healthy commensal bacteria.
Collapse
Affiliation(s)
- Muntsa Rocafort
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
| | - Desiree Henares
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
| | - Pedro Brotons
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
| | - Cristian Launes
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Mariona Fernandez de Sevilla
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Victoria Fumado
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Irene Barrabeig
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Epidemiological Surveillance Unit, Department of Health, Generalitat de Catalunya, 08907 Barcelona, Spain
| | - Sara Arias
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Alba Redin
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Maria Mele
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Pere Millat-Martinez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Joana Claverol
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
| | - Nuria Balanza
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Alex Mira
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Department of Health and Genomics, Center for Advanced Research in Public Health, Fundacion para el Fomento de la Investigacion Sanitaria y Biomedica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain
| | - Juan J. Garcia-Garcia
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Quique Bassat
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça Maputo 1929, Mozambique
| | - Iolanda Jordan
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
- Correspondence: ; Tel.: +34-673302405; Fax: +34-932803626
| |
Collapse
|
15
|
Dynamic distribution of nasal microbial community in yaks (Bos grunniens) at different ages. Trop Anim Health Prod 2021; 53:555. [PMID: 34853935 DOI: 10.1007/s11250-021-02996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/11/2021] [Indexed: 12/09/2022]
Abstract
The significance of microbial community structure has been extensively recognized due to its key roles in metabolism, immunity, and health maintenance. Importantly, increasing evidence indicated that the dynamic distribution of microbial community structure can be used for evaluating the health condition of host. Yaks (Bos grunniens), mainly inhabiting in high-altitude hypoxic environment, are characterized by excellent adaptability and strong resistance. Currently, it has been determined that yaks possessed the complicated gastrointestinal microbial ecosystem, whereas not much is known about the nasal microbial community structure of yaks. Therefore, this study was performed to compare and analyze the differences in nasal microbiota of yaks with different ages by high-throughput sequencing. In this study, a total of 487,168 and 486,498 high-quality sequences were achieved from YYG (1-month-old yaks) and AYG (1-year-old yaks), respectively. Additionally, 5,340 operational taxonomic units (OTUs) were identified and 657 OTUs were in common among all samples. Proteobacteria and Firmicutes were the two most predominant phyla in all samples. Moreover, Actinobacteria and Bacteroidetes were the tertiary dominant phyla in YYG and AYG, respectively. At the level of genus, Moraxella, Faucicola, and Mannheimia were the most preponderant bacterial genera in the young and adult yaks. As compared to the AYG, the proportions of Actinobacillus, Parabacteroides, and Haemophilus in the YYG were significantly increased, whereas the Rhizobacter was decreased. In conclusion, this study firstly compared and investigated the distribution of nasal microbiota in yaks with different ages. Results demonstrated that age was an important factor affecting the nasal microbiota. Moreover, the current study will provide a theoretical basis for the further study on the microbial community structure of yaks.
Collapse
|
16
|
Henares D, Rocafort M, Brotons P, de Sevilla MF, Mira A, Launes C, Cabrera-Rubio R, Muñoz-Almagro C. Rapid Increase of Oral Bacteria in Nasopharyngeal Microbiota After Antibiotic Treatment in Children With Invasive Pneumococcal Disease. Front Cell Infect Microbiol 2021; 11:744727. [PMID: 34712623 PMCID: PMC8546175 DOI: 10.3389/fcimb.2021.744727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction Antibiotics are commonly prescribed to young children for treating bacterial infections such as invasive pneumococcal disease (IPD) caused by Streptococcus pneumoniae. Despite the obvious benefits of antibiotics, little is known about their possible side effects on children’s nasopharyngeal microbiota. In other ecological niches, antibiotics have been described to perturb the balanced microbiota with short- and long-term effects on children’s health. The present study aims to evaluate and compare the nasopharyngeal microbiota of children with IPD and different degree of antibiotic exposure. Methods We investigated differences in nasopharyngeal microbiota of two groups of children <18 years with IPD: children not exposed to antibiotics before sample collection (n=27) compared to children previously exposed (n=54). Epidemiological/clinical data were collected from subjects, and microbiota was characterized by Illumina sequencing of V3-V4 amplicons of the 16S rRNA gene. Results Main epidemiological/clinical factors were similar across groups. Antibiotic-exposed patients were treated during a median of 4 days (IQR: 3–6) with at least one beta-lactam (100.0%). Higher bacterial richness and diversity were found in the group exposed to antibiotics. Different streptococcal amplicon sequence variants (ASVs) were differentially abundant across groups: antibiotic use was associated to lower relative abundances of Streptococcus ASV2 and Streptococcus ASV11 (phylogenetically close to S. pneumoniae), and higher relative abundances of Streptococcus ASV3 and Streptococcus ASV12 (phylogenetically close to viridans group streptococci). ASVs assigned to typical bacteria from the oral cavity, including Veillonella, Alloprevotella, Porphyromonas, Granulicatella, or Capnocytophaga, were associated to the antibiotic-exposed group. Common nosocomial genera such as Staphylococcus, Acinetobacter, and Pseudomonas were also enriched in the group exposed to antibiotics. Conclusion Our results point toward a reduction of S. pneumoniae abundance on the nasopharynx of children with IPD after antibiotic treatment and a short-term repopulation of this altered niche by oral and nosocomial bacteria. Future research studies will have to evaluate the clinical implications of these findings and if these populations would benefit from the probiotic/prebiotic administration or even from the improvement on oral hygiene practices frequently neglected among hospitalized children.
Collapse
Affiliation(s)
- Desiree Henares
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Muntsa Rocafort
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Brotons
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariona F de Sevilla
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Department, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | - Alex Mira
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Department of Health and Genomics, Center for Advanced Research in Public Health, Fundacion para el Fomento de la Investigacion Sanitaria y Biomedica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Cristian Launes
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Department, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre (TEAGASC), Moorepark, Fermoy, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
17
|
Henares D, Brotons P, de Sevilla MF, Fernandez-Lopez A, Hernandez-Bou S, Perez-Argüello A, Mira A, Muñoz-Almagro C, Cabrera-Rubio R. Differential nasopharyngeal microbiota composition in children according to respiratory health status. Microb Genom 2021; 7. [PMID: 34699345 PMCID: PMC8627214 DOI: 10.1099/mgen.0.000661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acute respiratory infections (ARIs) constitute one of the leading causes of antibiotic administration, hospitalization and death among children <5 years old. The upper respiratory tract microbiota has been suggested to explain differential susceptibility to ARIs and modulate ARI severity. The aim of the present study was to investigate the relation of nasopharyngeal microbiota and other microbiological parameters with respiratory health and disease, and to assess nasopharyngeal microbiota diagnostic utility for discriminating between different respiratory health statuses. We conducted a prospective case-control study at Hospital Sant Joan de Deu (Barcelona, Spain) from 2014 to 2018. This study included three groups of children <18 years with gradual decrease of ARI severity: cases with invasive pneumococcal disease (IPD) (representative of lower respiratory tract infections and systemic infections), symptomatic controls with mild viral upper respiratory tract infections (URTI), and healthy/asymptomatic controls according to an approximate case-control ratio 1:2. Nasopharyngeal samples were collected from participants for detection, quantification and serotyping of pneumococcal DNA, viral DNA/RNA detection and 16S rRNA gene sequencing. Microbiological parameters were included on case-control classification models. A total of 140 subjects were recruited (IPD=27, URTI=48, healthy/asymptomatic control=65). Children's nasopharyngeal microbiota composition varied according to respiratory health status and infection severity. The IPD group was characterized by overrepresentation of Streptococcus pneumoniae, higher frequency of invasive pneumococcal serotypes, increased rate of viral infection and underrepresentation of potential protective bacterial species such as Dolosigranulum pigrum and Moraxella lincolnii. Microbiota-based classification models differentiated cases from controls with moderately high accuracy. These results demonstrate the close relationship existing between a child's nasopharyngeal microbiota and respiratory health, and provide initial evidence of the potential of microbiota-based diagnostics for differential diagnosis of severe ARIs using non-invasive samples.
Collapse
Affiliation(s)
- Desiree Henares
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Brotons
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariona F de Sevilla
- CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Department, Hospital Sant Joan de Deu, Barcelona, Spain
| | | | | | | | - Alex Mira
- CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO, Valencia, Spain
| | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Deu, Hospital Sant Joan de Deu, Barcelona, Spain.,CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre (TEAGASC), Moorepark, Fermoy, Cork, Ireland.,APC Microbiome Institute, University College Cork, County Cork, Ireland
| |
Collapse
|
18
|
The Role of Respiratory Flora in the Pathogenesis of Chronic Respiratory Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6431862. [PMID: 34435047 PMCID: PMC8382525 DOI: 10.1155/2021/6431862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022]
Abstract
Large quantities of bacteria, including Firmicutes, Actinobacteria, and Bacteroidetes, colonize the surface of the respiratory mucosa of healthy people. They interact and coexist with the local mucosal immune system of the human airway, maintaining the immune stability and balance of the respiratory system. While suffering from chronic respiratory diseases, the microbial population in the airway changes and the proportion of Proteobacteria is increased in patients with asthma. The abundance of the microbial population in patients with chronic obstructive pulmonary disease (COPD) is decreased, and conversely, the proportion of Firmicutes and Proteobacteria increased. The diversity of airway microorganisms in cystic fibrosis (CF) patients is decreased, while pathogenic bacteria and conditional pathogenic bacteria are proliferated in large numbers. The proportion of Firmicutes and Proteobacteria is increased in patients with upper airway cough syndrome (UACS), which replaces the dominance of Streptococcus and Neisseria in the pharynx of a normal population. Therefore, a clear understanding of the immune process of the airway flora and the immune dysfunction of the flora on the pathogenesis of chronic respiratory diseases can provide new ideas for the prevention and treatment of human respiratory diseases.
Collapse
|
19
|
Martínez JE, Vargas A, Pérez-Sánchez T, Encío IJ, Cabello-Olmo M, Barajas M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients 2021; 13:2905. [PMID: 34578783 PMCID: PMC8466470 DOI: 10.3390/nu13092905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Miriam Cabello-Olmo
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (J.E.M.); (A.V.); (T.P.-S.); (I.J.E.)
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; (J.E.M.); (A.V.); (T.P.-S.); (I.J.E.)
| |
Collapse
|
20
|
Rueca M, Fontana A, Bartolini B, Piselli P, Mazzarelli A, Copetti M, Binda E, Perri F, Gruber CEM, Nicastri E, Marchioni L, Ippolito G, Capobianchi MR, Di Caro A, Pazienza V. Investigation of Nasal/Oropharyngeal Microbial Community of COVID-19 Patients by 16S rDNA Sequencing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2174. [PMID: 33672177 PMCID: PMC7926517 DOI: 10.3390/ijerph18042174] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023]
Abstract
Since December 2019, SARS-CoV-2 infection has been still rapidly spreading, resulting in a pandemic, followed by an increasing number of cases in countries throughout the world. The severity of the disease depends on the patient's overall medical condition but no appropriate markers are available to establish the prognosis of the patients. We performed a 16S rRNA gene sequencing, revealing an altered composition of the nasal/oropharyngeal (NOP) microbiota in 21 patients affected by COVID-19, paucisymptomatic or in an Intensive Care Unit (ICU), as compared to 10 controls negative for COVID-19 or eight affected by a different Human Coronavirus (HKU, NL63 and OC43). A significant decrease in Chao1 index was observed when patients affected by COVID-19 (in ICU) were compared to paucisymptomatic. Furthermore, patients who were in ICU, paucisymptomatic or affected by other Coronaviruses all displayed a decrease in the Chao1 index when compared to controls, while Shannon index significantly decreased only in patients under ICU as compared to controls and paucisymptomatic patients. At the phylum level, Deinococcus-Thermus was present only in controls as compared to SARS-CoV-2 patients admitted to ICU, paucisymptomatic or affected by other coronaviruses. Candidatus Saccharibacteria (formerly known as TM7) was strongly increased in negative controls and SARS-CoV-2 paucisymptomatic patients as compared to SARS-CoV-2 ICU patients. Other modifications were observed at a lower taxonomy level. Complete depletion of Bifidobacterium and Clostridium was exclusively observed in ICU SARS-CoV-2 patients, which was the only group characterized by the presence of Salmonella, Scardovia, Serratia and Pectobacteriaceae. In conclusion, our preliminary results showed that nasal/oropharyngeal microbiota profiles of patients affected with SARS-CoV-2 may provide valuable information in order to facilitate the stratification of patients and may open the way to new interventional strategies in order to ameliorate the outcome of the patients.
Collapse
Affiliation(s)
- Martina Rueca
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Andrea Fontana
- Biostatistics Unit Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, 71013 San Giovanni Rotondo , Italy; (A.F.); (M.C.)
| | - Barbara Bartolini
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Pierluca Piselli
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Antonio Mazzarelli
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Massimiliano Copetti
- Biostatistics Unit Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, 71013 San Giovanni Rotondo , Italy; (A.F.); (M.C.)
| | - Elena Binda
- Cancer Stem Cell Unit, ISBReMIT Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, 71013 San Giovanni Rotondo, Italy;
| | - Francesco Perri
- Gastroenterology Unit Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, 71013 San Giovanni Rotondo, Italy;
| | - Cesare Ernesto Maria Gruber
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Emanuele Nicastri
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Luisa Marchioni
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Antonino Di Caro
- National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Rome, Italy; (M.R.); (B.B.); (P.P.); (A.M.); (C.E.M.G.); (E.N.); (L.M.); (G.I.); (M.R.C.)
| | - Valerio Pazienza
- Gastroenterology Unit Fondazione-IRCCS “Casa Sollievo della Sofferenza” Hospital, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
21
|
The State of the Nitric Oxide Cycle in Respiratory Tract Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4859260. [PMID: 33133346 PMCID: PMC7591941 DOI: 10.1155/2020/4859260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
This review describes the unique links of the functioning of the nitric oxide cycle in the respiratory tract in normal and pathological conditions. The concept of a nitric oxide cycle has been expanded to include the NO-synthase and NO-synthase-independent component of its synthesis and the accompanying redox cascades in varying degrees of reversible reactions. The role of non-NO-synthase cycle components has been shown. Detailed characteristics of substrates for the synthesis of nitric oxide (NO) in the human body, which can be nitrogen oxides, nitrite and nitrate anions, and organic nitrates, as well as nitrates and nitrites of food products, are given. The importance of the human microbiota in the nitric oxide cycle has been shown. The role of significant components of nitrite and nitrate reductase systems in the nitric oxide cycle and the mechanisms of their activation and deactivation (participation of enzymes, cofactors, homeostatic indicators, etc.) under various conditions have been determined. Consideration of these factors allows for a detailed understanding of the mechanisms underlying pathological conditions of the respiratory system and the targeting of therapeutic agents. The complexity of the NO cycle with multidirectional cascades could be best understood using dynamic modeling.
Collapse
|
22
|
Xu X, Wu L, Sheng Y, Liu J, Xu Z, Kong W, Tang L, Chen Z. Airway microbiota in children with bronchial mucus plugs caused by Mycoplasma pneumoniae pneumonia. Respir Med 2020; 170:105902. [PMID: 32843185 DOI: 10.1016/j.rmed.2020.105902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is increasing evidence for a role of lung microbiota in the pathogenesis of Mycoplasma pneumoniae pneumonia (MPP). However, the alterations of lung microbiota in MPP with bronchial mucus plugs and its role in disease pathogenesis remain poorly understood. METHODS In this prospective observational study, we performed a longitudinal 16S rRNA-based microbiome survey on bronchoalveolar lavage (BAL) samples collected from 31 MPP with bronchial mucus plugs and 52 MPP without mucus plugs. RESULTS Our study showed a clear difference in airway microbiota between MPP children with and without bronchial mucus plugs. The MPP children with mucus plugs had lower abundances of Sphingomonas and Elizabethkingia, and a high abundance of Mycoplasma compared with MPP children without mucus plugs, subsequently contributing to increased ratios of Mycoplasma to Sphingomonas and Mycoplasma to Elizabethkingia. Children's age, fever time and serum cytokine levels were associated with airway microbiota alteration. Furthermore, significant correlations between bacterial genus abundances were found in MPP children with mucus plugs. CONCLUSIONS Our results suggest an impact of airway microbiota on the clinical course of MPP in children, deserving further investigations.
Collapse
Affiliation(s)
- Xuefeng Xu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China; Department of Rheumatology Immunology & Allergy, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Lei Wu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Yuanjian Sheng
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Jinling Liu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Zhufei Xu
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Weixing Kong
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Lanfang Tang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China
| | - Zhimin Chen
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, PR China.
| |
Collapse
|
23
|
Zhou H, Suo J, Zhu J. [Therapeutic Relevance of Human Microbiota and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:464-469. [PMID: 31315786 PMCID: PMC6712272 DOI: 10.3779/j.issn.1009-3419.2019.07.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
人体菌群与人类健康状态密切相关,如人体菌群的失调可能导致糖尿病、胃肠道疾病、肥胖等疾病的发生。人体内微生物与约20%的恶性肿瘤有关,肺癌(lung cancer, LC)是目前最为常见的恶性肿瘤之一,我国男性LC发病率及死亡率高居所有恶性肿瘤之首。近来研究表明,人体菌群可能通过代谢、炎症或免疫等途径影响着LC的发生,同时影响LC对放化疗、基因治疗、免疫治疗等治疗方法的疗效,如免疫治疗,是用于治疗LC的一种极有前景的手段,但不同患者从中获益不一,包含以肺癌细胞株的实验表明肠道微生物群可通过与宿主免疫系统的相互作用调节对免疫治疗的反应。但针对肺癌患者,肠道菌群是否仍能对免疫治疗进行调节仍存在争议。本文就人体菌群与LC的治疗相关性的近来研究进展进行综述。
Collapse
Affiliation(s)
- Huijie Zhou
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Suo
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Zhu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Wang T, He Q, Yao W, Shao Y, Li J, Huang F. The Variation of Nasal Microbiota Caused by Low Levels of Gaseous Ammonia Exposure in Growing Pigs. Front Microbiol 2019; 10:1083. [PMID: 31156592 PMCID: PMC6532555 DOI: 10.3389/fmicb.2019.01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/29/2019] [Indexed: 01/24/2023] Open
Abstract
Exposure to gaseous ammonia, even at low levels, can be harmful to pigs and human health. However, less is known about the effects of sustained exposure to gaseous ammonia on nasal microbiota colonization in growing pigs. A total of 120 Duroc×Landrace×Yorkshire pigs were housed in 24 separate chambers and continuously exposed to gaseous ammonia at 0,5, 10, 15, 20, and 25 ppm (four groups per exposure level) for 4 weeks. Then, we used high-throughput sequencing to perform 16S rRNA gene analysis in nasal swabs samples from 72 pigs (n = 12). The results of the nasal microbiota analysis showed that an increase in ammonia concentration, especially at 20 and 25 ppm, decreased the alpha diversity and relative abundance of nasal microbiota. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Chloroflexi were the most abundant phyla. In addition, the relative abundances of 24 microbial genera significantly changed as the ammonia level increased. Four microbial genera (Pseudomonas, Lactobacillus, Prevotella, and Bacteroides) were significantly decreased at 25 ppm, while only two genera (Moraxella and Streptococcus) were increased at 25 ppm. PICRUSt analyses showed that the relative abundances of the nasal microbiota involved in cell motility, signal transduction, the nervous system, environmental adaptation, and energy and carbohydrate metabolism were significantly decreased, while genes involved in the immune system, endocrine system, circulatory system, immune system diseases and metabolism of vitamins, lipid, and amino acids were increased with increased ammonia levels. The results of in vivo tests showed that an increase in ammonia levels, especially an ammonia level of 25 ppm, caused respiratory tract injury and increase the number of Moraxella and Streptococcus species, while simultaneously decreasing respiratory immunity and growth performance, consistent with the increased presence of harmful bacteria identified by nasal microbiota analysis. Herein, this study also indicted that the threshold concentration of ammonia in pig farming is 20 ppm.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiongyu He
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yafei Shao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ji Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Wang H, Zhou Q, Dai W, Feng X, Lu Z, Yang Z, Liu Y, Xie G, Yang Y, Shen K, Li Y, Li SC, Xu X, Shen Y, Li D, Zheng Y. Lung Microbiota and Pulmonary Inflammatory Cytokines Expression Vary in Children With Tracheomalacia and Adenoviral or Mycoplasma pneumoniae Pneumonia. Front Pediatr 2019; 7:265. [PMID: 31316955 PMCID: PMC6611399 DOI: 10.3389/fped.2019.00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Community-acquired pneumonia (CAP) is a worldwide infectious disease caused by bacteria, viruses, or a combination of these infectious agents. Mycoplasma pneumoniae is an atypical pneumonia pathogen that causes high morbidity and mortality in children, and adenovirus can lead to severe pneumonia. However, the etiology of different types of pneumonia is still unclear. In this study, we selected a total of 52 inpatients with M. pneumoniae pneumonia (MPP) (n = 21), adenovirus pneumonia (AVP) (n = 16), or tracheomalacia (n = 15) to serve as a disease control. Bronchoalveolar lavage fluid (BALF) samples that had been obtained for clinical use were analyzed. We compared the differences in microbiota and the expression of 10 inflammatory cytokines in samples between MPP, AVP, and tracheomalacia. We found that the bacterial diversity in MPP was lower than that in AVP and tracheomalacia. Mycoplasma, Streptococcus, and Pseudomonas were predominant in samples of MPP, AVP, and tracheomalacia, respectively. The expression levels of IL-6, IL-8, and IL-10 were significantly higher in inpatients with AVP compared to children hospitalized with tracheomalacia or MPP. The lung microbiota in MPP was remarkably correlated with IL-2, IL-4, IL-5, IL-6, TNF-α, and IL-1α expressions, while this was not found in tracheomalacia and AVP. Microbiota analysis identified a high load of multi-drug resistant Acinetobacter baumannii in the lung microbiota of several inpatients, which might be associated with the long hospitalization length and intra-group differences at the individual level. This study will help to understand the microbial etiology of tracheomalacia, AVP, and MPP and to identify effective therapies for these diseases.
Collapse
Affiliation(s)
- Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Qian Zhou
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Wenkui Dai
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Xin Feng
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Zhiwei Lu
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Zhenyu Yang
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Yanhong Liu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Gan Xie
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Yonghong Yang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China.,Department of Microbial Research, WeHealthGene Institute, Shenzhen, China.,Department of Respiratory Diseases, Beijing Children's Hospital, Beijing, China
| | - Kunling Shen
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China.,Department of Respiratory Diseases, Beijing Children's Hospital, Beijing, China
| | - Yinhu Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ximing Xu
- Institute of Statistics, NanKai University, Tianjin, China
| | - Yongshun Shen
- Department of Pediatrics, Shenzhen Dapeng District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Dongfang Li
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China.,Institute of Statistics, NanKai University, Tianjin, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|