1
|
Xia X, Lv T, Zheng L, Zhao Y, Shen P, Zhu D, Chen Y. Genomic Epidemiology of Clostridioides difficile ST81 in Multiple Hospitals in China. Infect Drug Resist 2024; 17:5535-5544. [PMID: 39676847 PMCID: PMC11646370 DOI: 10.2147/idr.s492668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Background Clostridioides difficile sequence type (ST) 81, mainly associated with ribotype (RT) 369, is a TcdA-negative and TcdB-positive genotype and a common ST found in China. Furthermore, ST81 strains are reported with highest resistance rates to many antimicrobial agents. However, given the potential for C. difficile ST81 transmission, research into the epidemiological characteristics of this type of ST remain limited. Methods We conducted a genomic epidemiology study addressing the genetic characteristics of C. difficile ST81 in five tertiary hospitals covering different regions in China between January 2010 and January 2021. Clinical toxigenic C. difficile strains were identified, typed by multi-locus sequence typing (MLST), and phylogenetic analysis, antimicrobial resistant gene (AMR) identification were performed after all these strains were conducted by whole genome sequencing (WGS). Results In total, 108 clinical C. difficile strains of ST81 were isolated and successfully analyzed by WGS, which showed that the percentage of isolates with AMRs was common in this type of ST. Furthermore, two types of transposons, Tn916 and Tn6189, were also detected. We found that all C. difficile ST81 genomes were closely related as pairwise core-genomic SNP (cgSNP) distance between the strains was on average 13 cgSNPs (range, 0-425 cgSNPs). Notably, these isolates were split into two sub-lineages (SL I and SL II) by Bayesian analysis, which suggested that both sub-lineages emerged independently. It is noted that some AMRs (such as clbA, dfrF, and cfrB) and Tn916 were only detected in SL I. Conclusion C. difficile ST81 is among the common STs in this study. Two independent sub-lineages of C. difficile ST81 strains are found. Furthermore, the presence of a high number of AMR genes and multiple mobile elements indicate a potential risk for transmission of C. difficile ST81. Based on these results, a robust surveillance system is crucial for identifying outbreaks, tracking infection trends, and implementing timely interventions.
Collapse
Affiliation(s)
- Xufen Xia
- Department of Laboratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Tao Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Lisi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuhong Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Porcari S, Maida M, Bibbò S, McIlroy J, Ianiro G, Cammarota G. Fecal Microbiota Transplantation as Emerging Treatment in European Countries 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:85-99. [PMID: 38175472 DOI: 10.1007/978-3-031-42108-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI) is one of the most common healthcare-associated infections and one of the leading causes of morbidity and mortality in hospitalized patients in the world. Although several antibiotics effectively treat CDI, some individuals may not respond to these drugs and may be cured by transplanting stool from healthy donors. FMT has demonstrated extraordinary cure rates for the cure of CDI recurrences.Moreover, FMT has also been investigated in other disorders associated with the alteration of gut microbiota, such as inflammatory bowel disease (IBD), where the alterations of the gut microbiota ecology have been theorized to play a causative role. Although FMT is currently not recommended to cure IBD patients in clinical practice, several studies have been recently carried out with the ultimate goal to search new therapeutic options to patients.This review summarizes data on the use of FMT for the treatment of both CDI and IBD, with a special attention to highlight studies conducted in European countries.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, Italy
| | - Stefano Bibbò
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - James McIlroy
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
3
|
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic Resistances of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:169-198. [PMID: 38175476 DOI: 10.1007/978-3-031-42108-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are a matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances, and most of the epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways or biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Mastrantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
5
|
Fettucciari K, Fruganti A, Stracci F, Spaterna A, Marconi P, Bassotti G. Clostridioides difficile Toxin B Induced Senescence: A New Pathologic Player for Colorectal Cancer? Int J Mol Sci 2023; 24:ijms24098155. [PMID: 37175861 PMCID: PMC10179142 DOI: 10.3390/ijms24098155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Clostridioides difficile (C. difficile) is responsible for a high percentage of gastrointestinal infections and its pathological activity is due to toxins A and B. C. difficile infection (CDI) is increasing worldwide due to the unstoppable spread of C. difficile in the anthropized environment and the progressive human colonization. The ability of C. difficile toxin B to induce senescent cells and the direct correlation between CDI, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD) could cause an accumulation of senescent cells with important functional consequences. Furthermore, these senescent cells characterized by long survival could push pre-neoplastic cells originating in the colon towards the complete neoplastic transformation in colorectal cancer (CRC) by the senescence-associated secretory phenotype (SASP). Pre-neoplastic cells could appear as a result of various pro-carcinogenic events, among which, are infections with bacteria that produce genotoxins that generate cells with high genetic instability. Therefore, subjects who develop IBS and/or IBD after CDI should be monitored, especially if they then have further CDI relapses, waiting for the availability of senolytic and anti-SASP therapies to resolve the pro-carcinogenic risk due to accumulation of senescent cells after CDI followed by IBS and/or IBD.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Fabrizio Stracci
- Public Health Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
6
|
Li Y, Liao J, Jian Z, Li H, Chen X, Liu Q, Liu P, Wang Z, Liu X, Yan Q, Liu W. Molecular epidemiology and clinical characteristics of
Clostridioides difficile
infection in patients with inflammatory bowel disease from a teaching hospital. J Clin Lab Anal 2022; 36:e24773. [DOI: 10.1002/jcla.24773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yan‐ming Li
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Jing‐zhong Liao
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Zi‐juan Jian
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Hong‐ling Li
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Qing‐xia Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Pei‐lin Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Zhi‐qian Wang
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Xuan Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha China
| | - Wen‐en Liu
- Department of Clinical Laboratory, Xiangya Hospital Central South University Changsha China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha China
| |
Collapse
|
7
|
Banawas SS. Systematic Review and Meta-Analysis on the Frequency of Antibiotic-Resistant Clostridium Species in Saudi Arabia. Antibiotics (Basel) 2022; 11:antibiotics11091165. [PMID: 36139945 PMCID: PMC9495114 DOI: 10.3390/antibiotics11091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium is a genus comprising Gram-positive, rod-shaped, spore-forming, anaerobic bacteria that cause a variety of diseases. However, there is a shortage of information regarding antibiotic resistance in the genus in Saudi Arabia. This comprehensive analysis of research results published up until December 2021 intends to highlight the incidence of antibiotic resistance in Clostridium species in Saudi Arabia. PubMed, Google Scholar, Web of Science, SDL, and ScienceDirect databases were searched using specific keywords, and ten publications on antibiotic resistance in Clostridium species in Saudi Arabia were identified. We found that the rates of resistance of Clostridium difficile to antibiotics were as follows: 42% for ciprofloxacin, 83% for gentamicin, 28% for clindamycin, 25% for penicillin, 100% for levofloxacin, 24% for tetracycline, 77% for nalidixic acid, 50% for erythromycin, 72% for ampicillin, and 28% for moxifloxacin; whereas those of C. perfringens were: 21% for metronidazole, 83% for ceftiofur, 39% for clindamycin, 59% for penicillin, 62% for erythromycin, 47% for oxytetracycline, and 47% for lincomycin. The current findings suggest that ceftiofur, erythromycin, lincomycin, and oxytetracycline should not be used in C. perfringens infection treatments in humans or animals in Saudi Arabia.
Collapse
Affiliation(s)
- Saeed S. Banawas
- Department of Medical Laboratories, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia; ; Tel.: +966-164041510
- Health and Basic Sciences Research Center, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Venhorst J, van der Vossen JMBM, Agamennone V. Battling Enteropathogenic Clostridia: Phage Therapy for Clostridioides difficile and Clostridium perfringens. Front Microbiol 2022; 13:891790. [PMID: 35770172 PMCID: PMC9234517 DOI: 10.3389/fmicb.2022.891790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Clostridioides difficile and Clostridium perfringens are responsible for many health care-associated infections as well as systemic and enteric diseases. Therefore, they represent a major health threat to both humans and animals. Concerns regarding increasing antibiotic resistance (related to C. difficile and C. perfringens) have caused a surge in the pursual of novel strategies that effectively combat pathogenic infections, including those caused by both pathogenic species. The ban on antibiotic growth promoters in the poultry industry has added to the urgency of finding novel antimicrobial therapeutics for C. perfringens. These efforts have resulted in various therapeutics, of which bacteriophages (in short, phages) show much promise, as evidenced by the Eliava Phage Therapy Center in Tbilisi, Georgia (https://eptc.ge/). Bacteriophages are a type of virus that infect bacteria. In this review, the (clinical) impact of clostridium infections in intestinal diseases is recapitulated, followed by an analysis of the current knowledge and applicability of bacteriophages and phage-derived endolysins in this disease indication. Limitations of phage and phage endolysin therapy were identified and require considerations. These include phage stability in the gastrointestinal tract, influence on gut microbiota structure/function, phage resistance development, limited host range for specific pathogenic strains, phage involvement in horizontal gene transfer, and-for phage endolysins-endolysin resistance, -safety, and -immunogenicity. Methods to optimize features of these therapeutic modalities, such as mutagenesis and fusion proteins, are also addressed. The future success of phage and endolysin therapies require reliable clinical trial data for phage(-derived) products. Meanwhile, additional research efforts are essential to expand the potential of exploiting phages and their endolysins for mitigating the severe diseases caused by C. difficile and C. perfringens.
Collapse
Affiliation(s)
- Jennifer Venhorst
- Biomedical Health, Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
9
|
Imwattana K, Putsathit P, Collins DA, Leepattarakit T, Kiratisin P, Riley TV, Knight DR. Global evolutionary dynamics and resistome analysis of Clostridioides difficile ribotype 017. Microb Genom 2022; 8:000792. [PMID: 35316173 PMCID: PMC9176289 DOI: 10.1099/mgen.0.000792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile PCR ribotype (RT) 017 ranks among the most successful strains of C. difficile in the world. In the past three decades, it has caused outbreaks on four continents, more than other ‘epidemic’ strains, but our understanding of the genomic epidemiology underpinning the spread of C. difficile RT 017 is limited. Here, we performed high-resolution phylogenomic and Bayesian evolutionary analyses on an updated and more representative dataset of 282 non-clonal C. difficile RT 017 isolates collected worldwide between 1981 and 2019. These analyses place an estimated time of global dissemination between 1953 and 1983 and identified the acquisition of the ermB-positive transposon Tn6194 as a key factor behind global emergence. This coincided with the introduction of clindamycin, a key inciter of C. difficile infection, into clinical practice in the 1960s. Based on the genomic data alone, the origin of C. difficile RT 017 could not be determined; however, geographical data and records of population movement suggest that C. difficile RT 017 had been moving between Asia and Europe since the Middle Ages and was later transported to North America around 1860 (95 % confidence interval: 1622–1954). A focused epidemiological study of 45 clinical C. difficile RT 017 genomes from a cluster in a tertiary hospital in Thailand revealed that the population consisted of two groups of multidrug-resistant (MDR) C. difficile RT 017 and a group of early, non-MDR C. difficile RT 017. The significant genomic diversity within each MDR group suggests that although they were all isolated from hospitalized patients, there was probably a reservoir of C. difficile RT 017 in the community that contributed to the spread of this pathogen.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Australia
- Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Deirdre A. Collins
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | | | | | - Thomas V. Riley
- School of Biomedical Sciences, The University of Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Australia
| | - Daniel R. Knight
- School of Biomedical Sciences, The University of Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Australia
- *Correspondence: Daniel R. Knight,
| |
Collapse
|
10
|
Xu T, Zhou F, Wang L, Wu S, Huang H. Metronidazole-Resistant Clostridioides difficile: Genomic and Transcriptomic Traits Acquired under In vitro Metronidazole Induction. Int J Antimicrob Agents 2022; 59:106570. [DOI: 10.1016/j.ijantimicag.2022.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/02/2022] [Accepted: 03/06/2022] [Indexed: 11/05/2022]
|
11
|
Markovskaya Y, Gavioli EM, Cusumano JA, Glatt AE. Coronavirus disease 2019 (COVID-19): Secondary bacterial infections and the impact on antimicrobial resistance during the COVID-19 pandemic. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2022; 2:e114. [PMID: 36483429 PMCID: PMC9726554 DOI: 10.1017/ash.2022.253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/16/2023]
Abstract
Secondary bacterial infections and bacterial coinfections are an important complication of coronavirus disease 2019 (COVID-19), leading to antibiotic overuse and increased rates of antimicrobial resistance (AMR) during the COVID-19 pandemic. In this literature review, we summarize the reported rates of secondary bacterial infections and bacterial coinfections in patients with COVID-19, the impact on patient outcomes, the antibiotic treatment approaches employed, and the resistance patterns observed. The reported data suggest that although the incidence of secondary bacterial infections or bacterial coinfections is relatively low, they are associated with worse outcomes such as prolonged hospitalization, intensive care unit admission, mechanical ventilator use, and increased mortality. Interestingly, antibiotic prescription rates are typically higher than secondary bacterial and bacterial coinfection rates, and reports of AMR are common. These findings highlight the need for an improved understanding of secondary bacterial and bacterial coinfection in patients with COVID-19, as well as improved treatment options, to mitigate inappropriate antibiotic prescribing and AMR.
Collapse
Affiliation(s)
- Yelena Markovskaya
- Department of Medicine, Mount Sinai South Nassau, Oceanside, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elizabeth M. Gavioli
- Department of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York
| | - Jaclyn A. Cusumano
- Department of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York
- Department of Pharmacy, Mount Sinai Queens, Queens, New York
| | - Aaron E. Glatt
- Department of Medicine, Mount Sinai South Nassau, Oceanside, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, New York
- Author for correspondence: Aaron E. Glatt, MD, Mount Sinai South Nassau, Oceanside, NY 11791. E-mail:
| |
Collapse
|
12
|
Imwattana K, Rodríguez C, Riley TV, Knight DR. A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile. Microb Genom 2021; 7:000696. [PMID: 34793295 PMCID: PMC8743556 DOI: 10.1099/mgen.0.000696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile infection (CDI), the leading healthcare-related gastrointestinal infection in the world. An association between AMR and CDI outbreaks is well documented, however, data is limited to a few ‘epidemic’ strains in specific geographical regions. Here, through detailed analysis of 10 330 publicly-available C. difficile genomes from strains isolated worldwide (spanning 270 multilocus sequence types (STs) across all known evolutionary clades), this study provides the first species-wide snapshot of AMR genomic epidemiology in C. difficile . Of the 10 330 C . difficile genomes, 4532 (43.9 %) in 89 STs across clades 1–5 carried at least one genotypic AMR determinant, with 901 genomes (8.7 %) carrying AMR determinants for three or more antimicrobial classes (multidrug-resistant, MDR). No AMR genotype was identified in any strains belonging to the cryptic clades. C. difficile from Australia/New Zealand had the lowest AMR prevalence compared to strains from Asia, Europe and North America (P <0.0001). Based on the phylogenetic clade, AMR prevalence was higher in clades 2 (84.3 %), 4 (81.5 %) and 5 (64.8 %) compared to other clades (collectively 26.9 %) (P <0.0001). MDR prevalence was highest in clade 4 (61.6 %) which was over three times higher than in clade 2, the clade with the second-highest MDR prevalence (18.3 %). There was a strong association between specific AMR determinants and three major epidemic C. difficile STs: ST1 (clade 2) with fluoroquinolone resistance (mainly T82I substitution in GyrA) (P <0.0001), ST11 (clade 5) with tetracycline resistance (various tet -family genes) (P <0.0001) and ST37 (clade 4) with macrolide-lincosamide-streptogramin B (MLSB) resistance (mainly ermB ) (P <0.0001) and MDR (P <0.0001). A novel and previously overlooked tetM -positive transposon designated Tn6944 was identified, predominantly among clade 2 strains. This study provides a comprehensive review of AMR in the global C. difficile population which may aid in the early detection of drug-resistant C. difficile strains, and prevention of their dissemination worldwide.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas V. Riley
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Daniel R. Knight
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
13
|
Lim SC, Hain-Saunders NMR, Imwattana K, Putsathit P, Collins DA, Riley TV. Genetically related Clostridium difficile from water sources and human CDI cases revealed by whole-genome sequencing. Environ Microbiol 2021; 24:1221-1230. [PMID: 34693624 DOI: 10.1111/1462-2920.15821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/04/2023]
Abstract
Clostridium difficile isolates from the environment are closely related to those from humans, indicating a possible environmental transmission route for C. difficile infection (CDI). In this study, C. difficile was isolated from 47.3% (53/112) of lake/pond, 23.0% (14/61) of river, 20.0% (3/15) of estuary and 0.0% (0/89) of seawater samples. The most common toxigenic strain isolated was C. difficile PCR ribotype (RT) 014/020 (10.5%, 8/76). All water isolates were susceptible to fidaxomicin, metronidazole, rifaximin, amoxicillin/clavulanic acid, moxifloxacin and tetracycline. Resistance to vancomycin, clindamycin, erythromycin and meropenem was detected in 5.3% (4/76), 26.3% (20/76), 1.3% (1/76) and 6.6% (5/76) of isolates, respectively. High-resolution core-genome analysis was performed on RT 014/020 isolates of water origin and 26 clinical RT 014/020 isolates from the same year and geographical location. Notably, both human and water strains were intermixed across three sequence types (STs), 2, 13 and 49. Six closely related groups with ≤10 core-genome single nucleotide polymorphisms were identified, five of which comprised human and water strains. Overall, 19.2% (5/26) of human strains shared a recent genomic relationship with one or more water strains. This study supports the growing hypothesis that environmental contamination by C. difficile plays a role in CDI transmission.
Collapse
Affiliation(s)
- Su-Chen Lim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Natasza M R Hain-Saunders
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
14
|
O’Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40:2459-2478. [DOI: 10.1007/s10096-021-04311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
|
15
|
Wickramage I, Spigaglia P, Sun X. Mechanisms of antibiotic resistance of Clostridioides difficile. J Antimicrob Chemother 2021; 76:3077-3090. [PMID: 34297842 DOI: 10.1093/jac/dkab231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile (CD) is one of the top five urgent antibiotic resistance threats in USA. There is a worldwide increase in MDR of CD, with emergence of novel strains which are often more virulent and MDR. Antibiotic resistance in CD is constantly evolving with acquisition of novel resistance mechanisms, which can be transferred between different species of bacteria and among different CD strains present in the clinical setting, community, and environment. Therefore, understanding the antibiotic resistance mechanisms of CD is important to guide optimal antibiotic stewardship policies and to identify novel therapeutic targets to combat CD as well as other bacteria. Epidemiology of CD is driven by the evolution of antibiotic resistance. Prevalence of different CD strains and their characteristic resistomes show distinct global geographical patterns. Understanding epidemiologically driven and strain-specific characteristics of antibiotic resistance is important for effective epidemiological surveillance of antibiotic resistance and to curb the inter-strain and -species spread of the CD resistome. CD has developed resistance to antibiotics with diverse mechanisms such as drug alteration, modification of the antibiotic target site and extrusion of drugs via efflux pumps. In this review, we summarized the most recent advancements in the understanding of mechanisms of antibiotic resistance in CD and analysed the antibiotic resistance factors present in genomes of a few representative well known, epidemic and MDR CD strains found predominantly in different regions of the world.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| |
Collapse
|
16
|
Putsathit P, Hong S, George N, Hemphill C, Huntington PG, Korman TM, Kotsanas D, Lahra M, McDougall R, McGlinchey A, Moore CV, Nimmo GR, Prendergast L, Robson J, Waring L, Wehrhahn MC, Weldhagen GF, Wilson RM, Riley TV, Knight DR. Antimicrobial resistance surveillance of Clostridioides difficile in Australia, 2015-18. J Antimicrob Chemother 2021; 76:1815-1821. [PMID: 33895826 DOI: 10.1093/jac/dkab099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Clostridioides difficile was listed as an urgent antimicrobial resistance (AMR) threat in a report by the CDC in 2019. AMR drives the evolution of C. difficile and facilitates its emergence and spread. The C. difficile Antimicrobial Resistance Surveillance (CDARS) study is nationwide longitudinal surveillance of C. difficile infection (CDI) in Australia. OBJECTIVES To determine the antimicrobial susceptibility of C. difficile isolated in Australia between 2015 and 2018. METHODS A total of 1091 strains of C. difficile were collected over a 3 year period by a network of 10 diagnostic microbiology laboratories in five Australian states. These strains were tested for their susceptibility to nine antimicrobials using the CLSI agar incorporation method. RESULTS All strains were susceptible to metronidazole, fidaxomicin, rifaximin and amoxicillin/clavulanate and low numbers of resistant strains were observed for meropenem (0.1%; 1/1091), moxifloxacin (3.5%; 38/1091) and vancomycin (5.7%; 62/1091). Resistance to clindamycin was common (85.2%; 929/1091), followed by resistance to ceftriaxone (18.8%; 205/1091). The in vitro activity of fidaxomicin [geometric mean MIC (GM) = 0.101 mg/L] was superior to that of vancomycin (1.700 mg/L) and metronidazole (0.229 mg/L). The prevalence of MDR C. difficile, as defined by resistance to ≥3 antimicrobial classes, was low (1.7%; 19/1091). CONCLUSIONS The majority of C. difficile isolated in Australia did not show reduced susceptibility to antimicrobials recommended for treatment of CDI (vancomycin, metronidazole and fidaxomicin). Resistance to carbapenems and fluoroquinolones was low and MDR was uncommon; however, clindamycin resistance was frequent. One fluoroquinolone-resistant ribotype 027 strain was detected.
Collapse
Affiliation(s)
- Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, WA, Australia
| | - Stacey Hong
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia
| | - Narelle George
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston 4029, QLD, Australia
| | | | - Peter G Huntington
- Department of Microbiology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, 2065, NSW, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Monica Lahra
- Department of Microbiology, The Prince of Wales Hospital, Randwick 2031, NSW, Australia
| | | | | | - Casey V Moore
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide 5000, SA, Australia
| | - Graeme R Nimmo
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston 4029, QLD, Australia
| | | | | | | | | | - Gerhard F Weldhagen
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide 5000, SA, Australia
| | - Richard M Wilson
- Australian Clinical Labs, Microbiology Department, Wayville 5034, SA, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia
| | - Daniel R Knight
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, WA, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch 6150, WA, Australia
| |
Collapse
|
17
|
Imwattana K, Putsathit P, Knight DR, Kiratisin P, Riley TV. Molecular Characterization of, and Antimicrobial Resistance in, Clostridioides difficile from Thailand, 2017-2018. Microb Drug Resist 2021; 27:1505-1512. [PMID: 33956520 DOI: 10.1089/mdr.2020.0603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile infection (CDI). Many antimicrobials, such as fluoroquinolones, have been associated with outbreaks of CDI globally. This study characterized AMR among clinical C. difficile strains in Thailand, where antimicrobial use remains inadequately regulated. Stool samples were screened for tcdB and positives were cultured. C. difficile isolates were characterized by toxin profiling and PCR ribotyping. Antimicrobial susceptibility testing was performed by agar incorporation, and whole-genome sequencing and AMR genotyping were performed on a subset of strains. There were 321 C. difficile strains isolated from 326 stool samples. The most common toxigenic ribotype (RT) was RT 017 (18%), followed by RTs 014 (12%) and 020 (7%). Resistance to clindamycin, erythromycin, moxifloxacin, and rifaximin was common, especially among RT 017 strains. AMR genotyping revealed a strong correlation between resistance genotype and phenotype for moxifloxacin and rifaximin. The presence of erm-class genes was associated with high-level clindamycin and erythromycin resistance. Point substitutions in the penicillin-binding proteins were not sufficient to confer meropenem resistance, but a Y721S substitution in PBP3 was associated with a 4.37-fold increase in meropenem minimal inhibitory concentration. No resistance to metronidazole, vancomycin, or fidaxomicin was observed.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | | | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
18
|
Collins DA, Wu Y, Tateda K, Kim HJ, Vickers RJ, Riley TV. Evaluation of the antimicrobial activity of ridinilazole and six comparators against Chinese, Japanese and South Korean strains of Clostridioides difficile. J Antimicrob Chemother 2021; 76:967-972. [PMID: 33351917 PMCID: PMC7953319 DOI: 10.1093/jac/dkaa522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Clostridioides difficile is the most common cause of antimicrobial-associated diarrhoea in high-income countries. Fluoroquinolone resistance enabled the emergence and intercontinental spread of the epidemic ribotype (RT) 027 strain of C. difficile in the early 2000s. Despite frequent inappropriate antimicrobial use in Asia, RT 027 is rarely isolated in the region, but the often fluoroquinolone- and clindamycin-resistant RT 017 strain predominates. OBJECTIVES This study evaluated the antimicrobial activity of ridinilazole, a novel antimicrobial agent with highly specific activity for C. difficile, against clinical strains of C. difficile from Asia. METHODS C. difficile strains from Japan (n = 64), South Korea (n = 32) and China (n = 44) were tested by the agar dilution method for susceptibility to ridinilazole, metronidazole, vancomycin, clindamycin, moxifloxacin, rifaximin and fidaxomicin. RESULTS All strains were susceptible to ridinilazole, with low MICs (0.03-0.25 mg/L). Several strains showed multiresistance profiles, particularly RT 017 (100% clindamycin resistant, 91.3% moxifloxacin resistant, 82.6% rifaximin resistant) and RT 369 (94.4% clindamycin resistant, 100% moxifloxacin resistant). Rifaximin resistance was absent in all strains from Japan. Multiresistance to clindamycin, moxifloxacin and rifaximin was found in 19 RT 017 strains (from China and South Korea), 2 RT 001 strains (South Korea) and 1 RT 046 strain (South Korea). CONCLUSIONS Ridinilazole showed potent activity against a range of Asian C. difficile strains, which otherwise frequently displayed resistance to several comparator antimicrobial agents. Ongoing surveillance of antimicrobial resistance profiles is required to monitor and control the spread of resistant strains.
Collapse
Affiliation(s)
- Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
| | - Yuan Wu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Hee-Jung Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, Western Australia
| |
Collapse
|
19
|
Antimicrobial Susceptibilities of Clostridium difficile Isolates from 12 Asia-Pacific Countries in 2014 and 2015. Antimicrob Agents Chemother 2020; 64:AAC.00296-20. [PMID: 32393487 DOI: 10.1128/aac.00296-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/02/2020] [Indexed: 01/05/2023] Open
Abstract
Clostridium (Clostridioides) difficile causes toxin-mediated diarrhea and pseudomembranous colitis, primarily among hospital inpatients. Outbreaks of C. difficile infection (CDI) have been caused by strains with acquired antimicrobial resistance, particularly fluoroquinolone resistance, including C. difficile ribotype (RT) 027 in North America and Europe and RT 017, the most common strain in Asia. Despite being the most common cause of hospital-acquired infection in high-income countries, and frequent misuse of antimicrobials in Asia, little is known about CDI in the Asia-Pacific region. We aimed to determine the antimicrobial susceptibility profiles of a collection of C. difficile isolates from the region. C. difficile isolates (n = 414) from a 2014 study of 13 Asia-Pacific countries were tested for susceptibility to moxifloxacin, amoxicillin-clavulanate, erythromycin, clindamycin, rifaximin, metronidazole, vancomycin, and fidaxomicin according to the Clinical and Laboratory Standards Institute's agar dilution method. All isolates were susceptible to metronidazole, vancomycin, amoxicillin-clavulanate, and fidaxomicin. Moxifloxacin resistance was detected in all countries except Australia, all RT 369 and QX 239 strains, and 92.7% of RT 018 and 70.6% of RT 017 strains. All C. difficile RT 012, 369, and QX 239 strains were also resistant to erythromycin and clindamycin. Rifaximin resistance was common in RT 017 strains only (63.2%) and was not detected in Australian, Japanese, or Singaporean isolates. In conclusion, antimicrobial susceptibility of C. difficile varied by strain type and by country. Multiresistance was common in emerging RTs 369 and QX 239 and the most common strain in Asia, RT 017. Ongoing surveillance is clearly warranted.
Collapse
|
20
|
Waker E, Ambrozkiewicz F, Kulecka M, Paziewska A, Skubisz K, Cybula P, Targoński Ł, Mikula M, Walewski J, Ostrowski J. High Prevalence of Genetically Related Clostridium Difficile Strains at a Single Hemato-Oncology Ward Over 10 Years. Front Microbiol 2020; 11:1618. [PMID: 32793147 PMCID: PMC7384382 DOI: 10.3389/fmicb.2020.01618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Aims: Clostridium difficile (C. difficile) infection (CDI) is the main cause of healthcare-associated infectious diarrhea. We used whole-genome sequencing (WGS) to measure the prevalence and genetic variability of C. difficile at a single hemato-oncology ward over a 10 year period. Methods: Between 2008 and 2018, 2077 stool samples were obtained from diarrheal patients hospitalized at the Department of Lymphoma; of these, 618 were positive for toxin A/B. 140 isolates were then subjected to WGS on Ion Torrent PGM sequencer. Results: 36 and 104 isolates were recovered from 36 to 46 patients with single and multiple CDIs, respectively. Of these, 131 strains were toxigenic. Toxin gene profiles tcdA(+);tcdB(+);cdtA/cdtB(+) and tcdA(+);tcdB(+);cdtA/cdtB(-) were identified in 122 and nine strains, respectively. No isolates showed reduced susceptibility to metronidazole and vancomycin. All tested strains were resistant to ciprofloxacin, and 72.9, 42.9, and 72.9% of strains were resistant to erythromycin, clindamycin, or moxifloxacin, respectively. Multi-locus sequence typing (MLST) identified 23 distinct sequence types (STs) and two unidentified strains. Strains ST1 and ST42 represented 31 and 30.1% of all strains tested, respectively. However, while ST1 was detected across nearly all years studied, ST42 was detected only from 2009 to 2011. Conclusion: The high proportion of infected patients in 2008-2011 may be explained by the predominance of more transmissible and virulent C. difficile strains. Although this retrospective study was not designed to define outbreaks of C. difficile, the finding that most isolates exhibited high levels of genetic relatedness suggests nosocomial acquisition.
Collapse
Affiliation(s)
- Edyta Waker
- Department of Clinical Microbiology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Skubisz
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Patrycja Cybula
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Łukasz Targoński
- Department of Lymphoproliferative Diseases, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoproliferative Diseases, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
- *Correspondence: Jerzy Ostrowski,
| |
Collapse
|