1
|
Kamankesh M, Yadegar A, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Miri AH, Rad-Malekshahi M, Hamblin MR, Wacker MG. Future Nanotechnology-Based Strategies for Improved Management of Helicobacter pylori Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302532. [PMID: 37697021 DOI: 10.1002/smll.202302532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Indexed: 09/13/2023]
Abstract
Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.
Collapse
Affiliation(s)
- Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, PO Box 14155-6455, Tehran, 14144-6455, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Insituto de Salud Carlos III, Valencia, 46022, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore, 117545, Singapore
| |
Collapse
|
2
|
Gupta A, Shetty S, Mutalik S, Chandrashekar H R, K N, Mathew EM, Jha A, Mishra B, Rajpurohit S, Ravi G, Saha M, Moorkoth S. Treatment of H. pylori infection and gastric ulcer: Need for novel Pharmaceutical formulation. Heliyon 2023; 9:e20406. [PMID: 37810864 PMCID: PMC10550623 DOI: 10.1016/j.heliyon.2023.e20406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Peptic ulcer disease (PUD) is one of the most prevalent gastro intestinal disorder which often leads to painful sores in the stomach lining and intestinal bleeding. Untreated Helicobacter pylori (H. pylori) infection is one of the major reasons for chronic PUD which, if left untreated, may also result in gastric cancer. Treatment of H. pylori is always a challenge to the treating doctor because of the poor bioavailability of the drug at the inner layers of gastric mucosa where the bacteria resides. This results in ineffective therapy and antibiotic resistance. Current treatment regimens available for gastric ulcer and H. pylori infection uses a combination of multiple antimicrobial agents, proton pump inhibitors (PPIs), H2-receptor antagonists, dual therapy, triple therapy, quadruple therapy and sequential therapy. This polypharmacy approach leads to patient noncompliance during long term therapy. Management of H. pylori induced gastric ulcer is a burning issue that necessitates alternative treatment options. Novel formulation strategies such as extended-release gastro retentive drug delivery systems (GRDDS) and nanoformulations have the potential to overcome the current bioavailability challenges. This review discusses the current status of H. pylori treatment, their limitations and the formulation strategies to overcome these shortcomings. Authors propose here an innovative strategy to improve the H. pylori eradication efficiency.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nandakumar K
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Elizabeth Mary Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gundawar Ravi
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
3
|
Mosallam FM, Bendary MM, Elshimy R, El-Batal AI. Curcumin clarithromycin nano-form a promising agent to fight Helicobacter pylori infections. World J Microbiol Biotechnol 2023; 39:324. [PMID: 37773301 PMCID: PMC10541836 DOI: 10.1007/s11274-023-03745-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
Helicobacter pylori (H. pylori) is the main cause of gastric diseases. However, the traditional antibiotic treatment of H. pylori is limited due to increased antibiotic resistance, low efficacy, and low drug concentration in the stomach. This study developed a Nano-emulsion system with ability to carry Curcumin and Clarithromycin to protect them against stomach acidity and increase their efficacy against H. pylori. We used oil in water emulsion system to prepare a novel Curcumin Clarithromycin Nano-Emulsion (Cur-CLR-NE). The nano-emulsion was validated by dynamic light scattering (DLS) technique, zeta potential; transmission electron microscopy (mean particle size 48 nm), UV-visible scanning and Fourier transform infrared spectroscopy (FT-IR). The in vitro assay of Cur-CLR-NE against H. pylori was evaluated by minimum inhibitory concentration (12.5 to 6.26 µg/mL), minimum bactericidal concentration (MBC) and anti-biofilm that showed a higher inhibitory effect of Cur-CLR-NE in compere with, free curcumin and clarithromycin against H. pylori. The in vivo results indicated that Cur-CLR-NE showed higher H. pylori clearance effect than free clarithromycin or curcumin under the same administration frequency and the same dose regimen. Histological analysis clearly showed that curcumin is highly effective in repairing damaged tissue. In addition, a potent synergistic effect was obvious between clarithromycin and curcumin in nano-emulsion system. The inflammation, superficial damage, the symptoms of gastritis including erosion in the mouse gastric mucosa, necrosis of the gastric epithelium gastric glands and interstitial oedema of tunica muscularis were observed in the positive control infected mice and absent from treated mice with Cur-CLR-NE.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mahmoud M Bendary
- Microbiology and Immunology Department, Faculty of pharmacy, Port-Said University, Port Fuad, Egypt
| | - Rana Elshimy
- Microbiology and immunology, Faculty of pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority, EDA, Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
4
|
Miri AH, Kamankesh M, Rad-Malekshahi M, Yadegar A, Banar M, Hamblin MR, Haririan I, Aghdaei HA, Zali MR. Factors associated with treatment failure, and possible applications of probiotic bacteria in the arsenal against Helicobacter pylori. Expert Rev Anti Infect Ther 2023; 21:617-639. [PMID: 37171213 DOI: 10.1080/14787210.2023.2203382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Helicobacter pylori is a widespread helical Gram-negative bacterium, which causes a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. This microbe frequently colonizes the mucosal layer of the human stomach and survives in the inhospitable microenvironment, by adapting to this hostile milieu. AREAS COVERED In this extensive review, we describe conventional antibiotic treatment regimens used against H. pylori including, empirical, tailored, and salvage therapies. Then, we present state-of-the-art information about reasons for treatment failure against H. pylori. Afterward, the latest advances in the use of probiotic bacteria against H. pylori infection are discussed. Finally, we propose a polymeric bio-platform to provide efficient delivery of probiotics for H. pylori infection. EXPERT OPINION For effective probiotic delivery systems, it is necessary to avoid the early release of probiotics at the acidic stomach pH, to protect them against enzymes and antimicrobials, and precisely target H. pylori bacteria which have colonized the antrum area of the stomach (basic pH).
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein, Johannesburg, South Africa
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Shu C, Xu Z, He C, Xu X, Zhou Y, Cai B, Zhu Y. Application of biomaterials in the eradication of Helicobacter pylori: A bibliometric analysis and overview. Front Microbiol 2023; 14:1081271. [PMID: 37007524 PMCID: PMC10061102 DOI: 10.3389/fmicb.2023.1081271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Helicobacter pylori is a prominent cause of gastritis, peptic ulcer, and gastric cancer. It is naturally colonized on the surface of the mucus layer and mucosal epithelial cells of the gastric sinus, surrounded not only by mucus layer with high viscosity that prevents the contact of drug molecules with bacteria but also by multitudinous gastric acid and pepsin, inactivating the antibacterial drug. With high-performance biocompatibility and biological specificity, biomaterials emerge as promising prospects closely associated with H. pylori eradication recently. Aiming to thoroughly summarize the progressing research in this field, we have screened 101 publications from the web of science database and then a bibliometric investigation was performed on the research trends of the application of biomaterials in eradicating H. pylori over the last decade utilizing VOSviewer and CiteSpace to establish the relationship between the publications, countries, institutions, authors, and most relevant topics. Keyword analysis illustrates biomaterials including nanoparticles (NPs), metallic materials, liposomes, and polymers are employed most frequently. Depending on their constituent materials and characterized structures, biomaterials exhibit diverse prospects in eradicating H. pylori regarding extending drug delivery time, avoiding drug inactivation, target response, and addressing drug resistance. Furthermore, we overviewed the challenges and forthcoming research perspective of high-performance biomaterials in H. pylori eradication based on recent studies.
Collapse
Affiliation(s)
- Chunxi Shu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Baihui Cai
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Yin Zhu,
| |
Collapse
|
6
|
Eltahlawi RA, Jiman-Fatani A, Gad NM, Ahmed SH, Al-Rabia MW, Zakai S, Kharaba A, El-Hossary D. Detection of Carbapenem-resistance in CRE by Comparative Assessment of RAPIDEC ® CARBA NP and Xpert™Carba-R Assay. Infect Drug Resist 2023; 16:1123-1131. [PMID: 36855392 PMCID: PMC9968435 DOI: 10.2147/idr.s393739] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Carbapenem-resistant Enterobacteriaceae (CRE) infections resist nearly most available antimicrobials, resulting in poor clinical outcomes. Saudi Arabia has a relatively high CRE prevalence. This study aims to evaluate the sensitivity of Rapidec Carba NP test and GeneXpert Carba-R assay compared with conventional manners for detection of carbapenemase-producing Enterobacteriaceae. Methods This is a cross-sectional study including a total of 90 CRE isolates examined at two tertiary hospitals in KSA from October 2020 to December 2021. Gram-negative Enterobacteriaceae were identified by using Vitek 2 system and were furtherly tested for imipenem and meropenem susceptibility by E- test strips, followed by Rapidec Carba NP test and the Xpert™Carba-R assay. Results Carbapenem-resistant K. pneumoniae (78.9%) and carbapenem-resistant E. coli (14.4%) were the two most common isolates species. Colistin (98.9%) and tigecycline (88.9%) were the most effective antibiotics against CRE isolates, followed by amikacin (52.2%), gentamicin (33.3%), cotrimoxazole (15.6%), and ciprofloxacin (8.9%). blaOXA-48 was the predominant carbapenemase gene (44.4%), followed by blaNDM (32.2%). blaKPC gene was not detected. The Rapidec Carba NP and the Xpert™Carba-R demonstrated an overall sensitivity of 69.3% and 88%, respectively, in comparison to gold standard detection of meropenem and imipenem resistance by Vitek 2 system and E- test strips. Discussion RAPIDEC® CARBA NP may be a beneficial screening test for detecting CRE, but for confirmation of the results, Xpert Carba-R assay is more sensitive, significantly lowering the turnaround time compared to reference traditional methods. The information on carbapenemase genes may be used for epidemiologic purposes and outbreak management.
Collapse
Affiliation(s)
- Rehab A Eltahlawi
- Department of Microbiology, College of Medicine, Taibah University, Taibah, Saudi Arabia,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asif Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Clinical and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Niveen M Gad
- Clinical Microbiology Laboratory, King Fahd Hospital, Medina, Saudi Arabia,Medical Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Shereen H Ahmed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Health Promotion Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadi Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Kharaba
- Intensive Care Unit, King Fahad Hospital, Madinah, Saudi Arabia
| | - Dalia El-Hossary
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt,Correspondence: Dalia El-Hossary, Email
| |
Collapse
|
7
|
Zhao Q, Wang WJ, Zhou SP, Su J, Sun H, Zhai JB, Hu YH. Jinghua Weikang capsule for helicobacter pylori eradication: A systematic review and meta-analysis with trial sequential analysis. Front Pharmacol 2022; 13:959184. [PMID: 36225593 PMCID: PMC9549166 DOI: 10.3389/fphar.2022.959184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Helicobacter pylori (H. pylori) infection is one of the most common chronic bacterial infections worldwide. The resistance of H. pylori to antibiotics may increase the risk of treatment failure. Complementary and alternative regimens are still needed. This study aimed to critically assess the efficacy and safety of Jinghua Weikang capsule (JWC) for H. pylori eradication. Materials and methods: PubMed, Embase, Web of Science, Cochrane library, China National Knowledge Infrastructure, Wanfang Digital Periodicals, and Chinese Science and Technology Periodicals database were searched from inception to April 2022. Randomized controlled trials (RCTs) comparing a combination of JWC and conventional treatments with conventional treatments alone or combined with a placebo for H. pylori eradication were considered for inclusion. The primary outcome was H. pylori eradication rate. The meta-analysis and trial sequential analysis (TSA) were conducted where possible. Results: A total of 34 studies were included in the statistical analysis. A pooled result showed that JWC with the duration of 2 weeks combined with the triple/quadruple therapy could significantly increase the H. pylori eradication rate compared with the triple/quadruple therapy alone (RR: 1.13, 95% CI: 1.05 to 1.21, p = 0.0008). However, the evidence of benefit was not confirmed by TSA. Another pooled result showed that JWC with the duration of 4 weeks combined with the triple/quadruple therapy could significantly increase the H. pylori eradication rate compared with the triple/quadruple therapy alone (RR: 1.21, 95% CI: 1.15 to 1.27, p < 0.00001). The evidence of benefit was confirmed by TSA. There were no statistically significant differences in the incidence of adverse reactions between the two groups. Conclusion: The present study suggests that JWC with the duration of 4 weeks can significantly improve the H. pylori eradication rate and should be considered as a complementary treatment to conventional regimens for H. pylori eradication. However, more high-quality RCTs are still needed to confirm these findings.
Collapse
Affiliation(s)
- Qian Zhao
- Cloudphar Pharmaceuticals Co, Ltd., Shenzhen, China
| | - Wen-jia Wang
- Cloudphar Pharmaceuticals Co, Ltd., Shenzhen, China
| | - Shui-ping Zhou
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co, Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co, Ltd., Tianjin, China
| | - Jing Su
- Tasly Pharmaceutical Group Co, Ltd., Tianjin, China
| | - He Sun
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co, Ltd., Tianjin, China
- Tasly Pharmaceutical Group Co, Ltd., Tianjin, China
| | - Jing-bo Zhai
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-hui Hu
- Cloudphar Pharmaceuticals Co, Ltd., Shenzhen, China
| |
Collapse
|
8
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
9
|
Sharaf M, Arif M, Hamouda HI, Khan S, Abdalla M, Shabana S, Rozan HE, Khan TU, Chi Z, Liu C. Preparation, urease inhibition mechanisms, and anti- Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100103. [PMID: 35024644 PMCID: PMC8732090 DOI: 10.1016/j.crmicr.2021.100103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This work investigated the effects of the bioflavonoid hesperetin-7-rhamnoglucoside isolated from Citrus uranium fruit peel on Helicobacter pylori (H. pylori). Separation and purity, crystalline state, and urease inhibition assays were carried out. Then, molecular docking and molecular dynamics (MD) simulations were conducted with urease as the target protein. Hesp was isolated from citrus peel with a purity of 95.14 µg mg-1 of dry raw material. X-ray diffraction analysis, hydrogen-1 nuclear magnetic resonance, Fourier transform infrared spectroscopy, and differential scanning calorimetry revealed that pure Hesp had the same crystallinity rating as the Hesp standard. The kinetic inhibition study demonstrated that Hesp inhibited H. pylori urease in a competitive and concentration-dependent manner with jack bean urease. In addition, bioimaging studies with laser scanning confocal microscopy and scanning electron microscopy illustrated that Hesp interacted with bacterial cells and induced membrane disruption by creating holes in the outer membranes of the bacterial cells, resulting in the leakage of amino acids. Importantly, molecular docking and 20 ns MD simulations revealed that Hesp inhibited the target protein through slow-binding inhibition and hydrogen bond interactions with active site residues, namely, Gly11 (O⋯H distance = 2.2 Å), Gly13 (O⋯H distance = 2.4 Å), Ser12 (O⋯H distance = 3.3 Å), Lys14 (O⋯H distance = 3.3 Å), and Arg179 (O⋯H distance = 2.7 Å). This work presents novel anti- H. pylori agents from natural sources.
Collapse
Affiliation(s)
- Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hamed I. Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, PR China
| | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hussein. E. Rozan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Tehsin Ullah Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|