1
|
Zaragoza N, Anderson GI, Allison-Logan S, Monir K, Furst AL. Novel delivery systems for controlled release of bacterial therapeutics. Trends Biotechnol 2024; 42:929-937. [PMID: 38310020 DOI: 10.1016/j.tibtech.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
As more is learned about the benefits of microbes, their potential to prevent and treat disease is expanding. Microbial therapeutics are less burdensome and costly to produce than traditional molecular drugs, often with superior efficacy. Yet, as with most medicines, controlled dosing and delivery to the area of need remain key challenges for microbes. Advances in materials to control small-molecule delivery are expected to translate to microbes, enabling similar control with equivalent benefits. In this perspective, recent advances in living biotherapeutics are discussed within the context of new methods for their controlled release. The integration of these advances provides a roadmap for the design, synthesis, and analysis of controlled microbial therapeutic delivery systems.
Collapse
Affiliation(s)
- Nadia Zaragoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace I Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirmina Monir
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med 2024; 12:20503121241257486. [PMID: 38826830 PMCID: PMC11143861 DOI: 10.1177/20503121241257486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The human microbiome, particularly the gut microbiome, has emerged as a central determinant of health and disease. Dysbiosis, an imbalance in the microbial composition of the gut, is associated with a variety of metabolic and other diseases, highlighting the potential for microbiota-targeted treatments. Fecal microbiota transplantation has received considerable attention as a promising therapy to modulate the gut microbiome and restore microbial homeostasis. However, challenges remain, including standardization, safety, and long-term efficacy. This review summarizes current knowledge on fecal microbiota transplantation and describes the next generation therapies targeting microbiome. This review looked at the mechanistic understanding of fecal microbiota transplantation and alternative strategies, elucidating their potential role in improving dysbiosis-associated metabolic disorders, such as obesity, and type 2 diabetes and others. Additionally, this review discussed the growing application of therapies targeting the gut microbiome. Insights from clinical trials, preclinical studies, and emerging technologies provide a comprehensive overview of the evolving landscape of microbiome-based interventions. Through a critical assessment of current advances and prospects, this review aims to highlight the therapeutic potential of targeting gut microbiome and pave the way for innovative approaches in precision medicine and personalized treatments.
Collapse
Affiliation(s)
- Zenawork Sahle
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute Gebreyes
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Science, Debre Berhan Compressive Specialized Hospital, Debre Berhan, Ethiopia
| | - Tsegahun Asfaw Abebe
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
3
|
Blair HA. SER-109 (VOWST ™): A Review in the Prevention of Recurrent Clostridioides difficile Infection. Drugs 2024; 84:329-336. [PMID: 38441806 DOI: 10.1007/s40265-024-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 04/02/2024]
Abstract
SER-109 (VOWST™; fecal microbiota spores, live-brpk) is a live biotherapeutic product indicated to prevent the recurrence of Clostridioides difficile infection (CDI) in patients 18 years of age and older following standard of care (SOC) antibacterial treatment for recurrent CDI. It is a purified bacterial spore suspension sourced from healthy donors. As the first oral faecal microbiota product approved for prevention of recurrent CDI, SER-109 is administered as four capsules once daily for three consecutive days. In a well-designed, placebo-controlled, phase III trial (ECOSPOR III), SER-109 significantly reduced the risk of recurrent CDI at 8 weeks post-treatment, with a durable response seen at 6 months post-treatment. Treatment with SER-109 was also associated with rapid and steady improvement in health-related quality of life compared with placebo. SER-109 was generally well tolerated, with a safety profile similar to that of placebo. The most common adverse events were of mild to moderate severity and generally gastrointestinal in nature. Thus, with the convenience of oral administration and lack of necessity for cold storage, SER-109 is a valuable option for preventing further CDI recurrence in adults following antibacterial treatment for recurrent CDI.
Collapse
Affiliation(s)
- Hannah A Blair
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
4
|
Vitiello A, Sabbatucci M, Zovi A, Salzano A, Ponzo A, Boccellino M. Advances in Therapeutic Strategies for the Management of Clostridioides difficile Infection. J Clin Med 2024; 13:1331. [PMID: 38592194 PMCID: PMC10932341 DOI: 10.3390/jcm13051331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
The infection caused by Clostridioides difficile represents one of the bacterial infections with the greatest increase in incidence among nosocomial infections in recent years. C. difficile is a Gram-positive bacterium able to produce toxins and spores. In some cases, infection results in severe diarrhoea and fulminant colitis, which cause prolonged hospitalisation and can be fatal, with repercussions also in terms of health economics. C. difficile is the most common cause of antibiotic-associated diarrhoea in the healthcare setting. The problem of bacterial forms that are increasingly resistant to common antibiotic treatments is also reflected in C. difficile infection (CDI). One of the causes of CDI is intestinal dysmicrobialism induced by prolonged antibiotic therapy. Moreover, in recent years, the emergence of increasingly virulent strains resistant to antibiotic treatment has made the picture even more complex. Evidence on preventive treatments to avoid recurrence is unclear. Current guidelines indicate the following antibiotics for the treatment of CDI: metronidazole, vancomycin, and fidaxomycin. This short narrative review provides an overview of CDI, antibiotic resistance, and emerging treatments.
Collapse
Affiliation(s)
- Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Andrea Zovi
- Ministry of Health, Directorate General of Hygiene, Food Safety and Nutrition, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Antonio Salzano
- Ministry of Health, Directorate-General for Health Prevention, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Annarita Ponzo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 81100 Naples, Italy
| |
Collapse
|
5
|
Kim DY, Lee SY, Lee JY, Whon TW, Lee JY, Jeon CO, Bae JW. Gut microbiome therapy: fecal microbiota transplantation vs live biotherapeutic products. Gut Microbes 2024; 16:2412376. [PMID: 39377231 PMCID: PMC11469438 DOI: 10.1080/19490976.2024.2412376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The human intestine hosts a complex ecosystem of various microorganisms, collectively known as the gut microbiome, which significantly impacts human health. Disruptions in the gut microbiome are linked to various disorders, including gastrointestinal diseases, such as Clostridioides difficile infection and inflammatory bowel disease, as well as metabolic, neurological, oncologic conditions. Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as prospective therapeutic procedures to restore microbial and metabolic balance in the gut. This review assesses the latest advancements, challenges, and therapeutic efficacy of FMT and LBPs, highlighting the need for standardization, safety, and long-term evaluation to optimize their clinical application.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - So-Yeon Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW In this review, we discuss recent research that has furthered our understanding of microbiome development during childhood, the role of the microbiome in infections during this life stage, and emerging opportunities for microbiome-based therapies for infection prevention or treatment in children. RECENT FINDINGS The microbiome is highly dynamic during childhood and shaped by a variety of host and environmental factors. In turn, the microbiome influences risk and severity of a broad range of infections during childhood, with recent studies highlighting potential roles in respiratory, gastrointestinal, and systemic infections. The microbiome exerts this influence through both direct interactions with potential pathogens and indirectly through modulation of host immune responses. The elucidation of some of these mechanisms by recent studies and the development of effective microbiome-based therapies for adults with recurrent Clostridioides difficile infection highlight the enormous promise that targeting the microbiome has for reducing the burden of infectious diseases during childhood. SUMMARY The microbiome has emerged as a key modifier of infection susceptibility and severity among children. Further research is needed to define the roles of microbes other than bacteria and to elucidate the mechanisms underlying microbiome-host and microbiome-pathogen interactions of importance to infectious diseases in children.
Collapse
Affiliation(s)
- Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| | - Sarah M. Heston
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| | - Matthew S. Kelly
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| |
Collapse
|
7
|
McFarland LV, Goldstein EJC, Kullar R. Microbiome-Related and Infection Control Approaches to Primary and Secondary Prevention of Clostridioides difficile Infections. Microorganisms 2023; 11:1534. [PMID: 37375036 DOI: 10.3390/microorganisms11061534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridioides difficile infections (CDIs) have decreased in the past years, but since 2021, some hospitals have reported an increase in CDI rates. CDI remains a global concern and has been identified as an urgent threat to healthcare. Although multiple treatment options are available, prevention strategies are more limited. As CDI is an opportunistic infection that arises after the normally protective microbiome has been disrupted, preventive measures aimed at restoring the microbiome have been tested. Our aim is to update the present knowledge on these various preventive strategies published in the past five years (2018-2023) to guide clinicians and healthcare systems on how to best prevent CDI. A literature search was conducted using databases (PubMed, Google Scholar, and clinicaltrials.gov) for phase 2-3 clinical trials for the primary or secondary prevention of CDI and microbiome and probiotics. As the main factor for Clostridium difficile infections is the disruption of the normally protective intestinal microbiome, strategies aimed at restoring the microbiome seem most rational. Some strains of probiotics, the use of fecal microbial therapy, and live biotherapeutic products offer promise to fill this niche; although, more large randomized controlled trials are needed that document the shifts in the microbiome population.
Collapse
Affiliation(s)
| | | | - Ravina Kullar
- Expert Stewardship Inc., Newport Beach, CA 92663, USA
| |
Collapse
|
8
|
Keathley J, White J, Reid G. The Impact of Nutrition, Physical Activity, Beneficial Microbes, and Fecal Microbiota Transplant for Improving Health. Life (Basel) 2023; 13:life13051124. [PMID: 37240769 DOI: 10.3390/life13051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The recognition that microbes are integral to human life has led to studies on how to manipulate them in favor of health outcomes. To date, there has been no conjoint recommendation for the intake of dietary compounds that can complement the ingested organisms in terms of promoting an improved health outcome. The aim of this review is to discuss how beneficial microbes in the form of probiotics, fermented foods, and donor feces are being used to manage health. In addition, we explore the rationale for selecting beneficial microbial strains and aligning diets to accommodate their propagation in the gut. A pilot clinical trial design is presented to examine the effects of probiotics and exercise in patients with phenylketonuria (PKU); it is the most common inborn error of amino acid metabolism, and it is a complication that requires lifelong dietary intervention. The example design is provided to illustrate the importance of using omics technology to see if the intervention elevates neuroactive biogenic amines in the plasma; increases the abundance of Eubacterium rectale, Coprococcus eutactus, Akkermansia muciniphila, or Butyricicoccus; and increases Escherichia/Shigella in the gut, all as markers of improved health. By emphasizing the combined importance of diet, microbial supplements, and the gut microbiome, we hope that future studies will better align these components, not only to improve outcomes, but also to enhance our understanding of the mechanisms.
Collapse
Affiliation(s)
- Justine Keathley
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Jessica White
- Department of Food and Nutritional Sciences, Brescia College, 1285 Western Road, London, ON N6G 1H2, Canada
| | - Gregor Reid
- Departments of Microbiology & Immunology and Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada
| |
Collapse
|