1
|
Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y, Han L. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. NANO-MICRO LETTERS 2024; 17:34. [PMID: 39373823 PMCID: PMC11458861 DOI: 10.1007/s40820-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Slick RA, Sutton J, Haberman M, O'Brien BS, Tinklenberg JA, Mardikar A, Prom MJ, Beatka M, Gartz M, Vanden Avond MA, Siebers E, Mack DL, Gonzalez JP, Ebert AD, Nagaraju K, Lawlor MW. High mobility group box 1 (HMGB1) is a potential disease biomarker in cell and mouse models of Duchenne muscular dystrophy. Biol Open 2024; 13:bio060542. [PMID: 39158383 PMCID: PMC11391821 DOI: 10.1242/bio.060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder affecting 1:3500 male births and is associated with myofiber degeneration, regeneration, and inflammation. Glucocorticoid treatments have been the standard of care due to immunomodulatory/immunosuppressive properties but novel genetic approaches, including exon skipping and gene replacement therapy, are currently being developed. The identification of additional biomarkers to assess DMD-related inflammatory responses and the potential efficacy of these therapeutic approaches are thus of critical importance. The current study uses RNA sequencing of skeletal muscle from two mdx mouse models to identify high mobility group box 1 (HMGB1) as a candidate biomarker potentially contributing to DMD-related inflammation. HMGB1 protein content was increased in a human iPSC-derived skeletal myocyte model of DMD and microdystrophin treatment decreased HMGB1 back to control levels. In vivo, HMGB1 protein levels were increased in vehicle treated B10-mdx skeletal muscle compared to B10-WT and significantly decreased in B10-mdx animals treated with adeno-associated virus (AAV)-microdystrophin. However, HMGB1 protein levels were not increased in D2-mdx skeletal muscle compared to D2-WT, demonstrating a strain-specific difference in DMD-related immunopathology.
Collapse
Affiliation(s)
- Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute , Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Haberman
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Benjamin S O'Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute , Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aashay Mardikar
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Melanie Gartz
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A Vanden Avond
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emily Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98104, USA
- Institute for Stem Cell and Regenerative Medicine , University of Washington, Seattle, WA 98104, USA
| | | | - Allison D Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kanneboyina Nagaraju
- AGADA BioSciences Inc., Halifax, Nova Scotia, B3H0A8, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY 13902, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| |
Collapse
|
3
|
Yang X, Tang H, He L, Peng T, Li J, Zhang J, Liu L, Zhou H, Chen Z, Zhao J, Zhang Y, Zhong M, Han M, Zhang M, Niu H, Xu K. Proteomic changes of botulinum neurotoxin injection on muscle growth in children with spastic cerebral palsy. Proteomics Clin Appl 2024; 18:e2300070. [PMID: 38456375 DOI: 10.1002/prca.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE The study aims to explore the proteomic profile and specific target proteins associated with muscle growth in response to botulinum neurotoxin A (BoNT-A) treatment, in order to improve spasticity management in children with cerebral palsy (CP). EXPERIMENTAL DESIGN A total of 54 participants provided 60 plasma samples for proteomic analysis. Among them, six children were sampled before and after receiving their first BoNT-A injection. In addition, 48 unrelated children were enrolled, among whom one group had never received BoNT-A injections and another group was sampled after their first BoNT-A injection. Differentially expressed proteins were identified using the data-independent acquisition (DIA) mass spectrometry approach. Gene Ontology (GO), protein-protein interaction network, and Kyoto Encyclopedia of Genes and Genome analysis were conducted to explore the function and relationship among differentially expressed proteins. The expression levels of target proteins were verified by quantitative real-time PCR and western blotting. RESULTS Analysis identified significant differential expression of 90 proteins across two time points, including 48 upregulated and 42 downregulated proteins. The upregulated thioredoxin, α-actinin-1, and aggrecan, and the downregulated integrin beta-1 may affect the growth of muscles affected by spasticity 3 months after BoNT-A injection. This effect is potentially mediated through the activation or inhibition of PI3K-Akt, focal adhesion, and regulation of actin cytoskeleton signaling pathways. CONCLUSION AND CLINICAL RELEVANCE BoNT-A injection could lead to a disruption of protein levels and signaling pathways, a condition subsequently associated with muscle growth. This finding might aid clinicians in optimizing the management of spasticity in children with CP.
Collapse
Affiliation(s)
- Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingbo Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Sport Rehabilitation, Shanghai University of Sport, shanghai, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingshan Han
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengqing Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd, Shanghai, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Doulidis PG, Kuropka B, Frizzo Ramos C, Rodríguez-Rojas A, Burgener IA. Characterization of the plasma proteome from healthy adult dogs. Front Vet Sci 2024; 11:1356318. [PMID: 38638644 PMCID: PMC11024428 DOI: 10.3389/fvets.2024.1356318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Bloodwork is a widely used diagnostic tool in veterinary medicine, as diagnosis and therapeutic interventions often rely on blood biomarkers. However, biomarkers available in veterinary medicine often lack sensitivity or specificity. Mass spectrometry-based proteomics technology has been extensively used in the analysis of biological fluids. It offers excellent potential for a more comprehensive characterization of the plasma proteome in veterinary medicine. Methods In this study, we aimed to identify and quantify plasma proteins in a cohort of healthy dogs and compare two techniques for depleting high-abundance plasma proteins to enable the detection of lower-abundance proteins via label-free quantification liquid chromatography-mass spectrometry. We utilized surplus lithium-heparin plasma from 30 healthy dogs, subdivided into five groups of pooled plasma from 6 randomly selected individuals each. Firstly, we used a commercial kit to deplete high-abundance plasma proteins. Secondly, we employed an in-house method to remove albumin using Blue-Sepharose. Results and discussion Among all the samples, some of the most abundant proteins identified were apolipoprotein A and B, albumin, alpha-2-macroglobulin, fibrinogen beta chain, fibronectin, complement C3, serotransferrin, and coagulation factor V. However, neither of the depletion techniques achieved significant depletion of highly abundant proteins. Despite this limitation, we could detect and quantify many clinically relevant proteins. Determining the healthy canine proteome is a crucial first step in establishing a reference proteome for canine plasma. After enrichment, this reference proteome can later be utilized to identify protein markers associated with different diseases, thereby contributing to the diagnosis and prognosis of various pathologies.
Collapse
Affiliation(s)
- Pavlos G. Doulidis
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Carolina Frizzo Ramos
- The Interuniversity Messerli Research Institute, Medical University Vienna, Vienna, Austria
- Clinical Center for Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandro Rodríguez-Rojas
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan A. Burgener
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
5
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Sanders EC, Santos AM, Nguyen EK, Gelston AA, Majumdar S, Weiss GA. Phage vs. Phage: Direct Selections of Sandwich Binding Pairs. Viruses 2023; 15:v15030807. [PMID: 36992515 PMCID: PMC10057555 DOI: 10.3390/v15030807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The sandwich format immunoassay is generally more sensitive and specific than more common assay formats, including direct, indirect, or competitive. A sandwich assay, however, requires two receptors to bind non-competitively to the target analyte. Typically, pairs of antibodies (Abs) or antibody fragments (Fabs) that are capable of forming a sandwiching with the target are identified through a slow, guess-and-check method with panels of candidate binding partners. Additionally, sandwich assays that are reliant on commercial antibodies can suffer from changes to reagent quality outside the researchers' control. This report presents a reimagined and simplified phage display selection protocol that directly identifies sandwich binding peptides and Fabs. The approach yielded two sandwich pairs, one peptide-peptide and one Fab-peptide sandwich for the cancer and Parkinson's disease biomarker DJ-1. Requiring just a few weeks to identify, the sandwich pairs delivered apparent affinity that is comparable to other commercial peptide and antibody sandwiches. The results reported here could expand the availability of sandwich binding partners for a wide range of clinical biomarker assays.
Collapse
Affiliation(s)
- Emily C Sanders
- Departments of Chemistry, University of California, Irvine, CA 92697, USA
| | - Alicia M Santos
- Departments of Chemistry, University of California, Irvine, CA 92697, USA
| | - Eugene K Nguyen
- Departments of Chemistry, University of California, Irvine, CA 92697, USA
| | - Aidan A Gelston
- Departments of Chemistry, University of California, Irvine, CA 92697, USA
| | - Sudipta Majumdar
- Departments of Chemistry, University of California, Irvine, CA 92697, USA
| | - Gregory A Weiss
- Departments of Chemistry, University of California, Irvine, CA 92697, USA
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
8
|
O'Sullivan EM, Dowling P, Swandulla D, Ohlendieck K. Proteomic Identification of Saliva Proteins as Noninvasive Diagnostic Biomarkers. Methods Mol Biol 2023; 2596:147-167. [PMID: 36378438 DOI: 10.1007/978-1-0716-2831-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many biomedically relevant biomarkers are proteins with characteristic biochemical properties and a relatively restricted subcellular distribution. The comparative and mass spectrometry-based proteomic analysis of body fluids can be particularly instrumental for the targeted identification of novel protein biomarkers with pathological relevance. In this respect, new research efforts in biomarker discovery focus on the systematic mapping of the human saliva proteome, as well as the pathobiochemical identification of disease-related modifications or concentration changes in specific saliva proteins. As a product of exocrine secretion, saliva can be considered an ideal source for the biochemical identification of new disease indicators. Importantly, saliva represents a body fluid that is continuously available for diagnostic and prognostic assessments. This chapter gives an overview of saliva proteomics, including a discussion of the usefulness of both liquid chromatography and two-dimensional gel electrophoresis for efficient protein separation in saliva proteomics.
Collapse
Affiliation(s)
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
9
|
Abstract
The combination of large-scale protein separation techniques, sophisticated mass spectrometry, and systems bioinformatics has led to the establishment of proteomics as a distinct discipline within the wider field of protein biochemistry. Both discovery proteomics and targeted proteomics are widely used in biological and biomedical research, whereby the analytical approaches can be broadly divided into proteoform-centric top-down proteomics versus peptide-centric bottom-up proteomics. This chapter outlines the scientific value of top-down proteomics and describes how fluorescence two-dimensional difference gel electrophoresis can be combined with the systematic analysis of crucial post-translational modifications. The concept of on-membrane digestion following the electrophoretic transfer of proteins and the usefulness of comparative two-dimensional immunoblotting are discussed.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
10
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Gargan S, Dowling P, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic Identification of Markers of Membrane Repair, Regeneration and Fibrosis in the Aged and Dystrophic Diaphragm. Life (Basel) 2022; 12:1679. [PMID: 36362832 PMCID: PMC9696191 DOI: 10.3390/life12111679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Deficiency in the membrane cytoskeletal protein dystrophin is the underlying cause of the progressive muscle wasting disease named Duchenne muscular dystrophy. In order to detect novel disease marker candidates and confirm the complexity of the pathobiochemical signature of dystrophinopathy, mass spectrometric screening approaches represent ideal tools for comprehensive biomarker discovery studies. In this report, we describe the comparative proteomic analysis of young versus aged diaphragm muscles from wild type versus the dystrophic mdx-4cv mouse model of X-linked muscular dystrophy. The survey confirmed the drastic reduction of the dystrophin-glycoprotein complex in the mdx-4cv diaphragm muscle and concomitant age-dependent changes in key markers of muscular dystrophy, including proteins involved in cytoskeletal organization, metabolite transportation, the cellular stress response and excitation-contraction coupling. Importantly, proteomic markers of the regulation of membrane repair, tissue regeneration and reactive myofibrosis were detected by mass spectrometry and changes in key proteins were confirmed by immunoblotting. Potential disease marker candidates include various isoforms of annexin, the matricellular protein periostin and a large number of collagens. Alterations in these proteoforms can be useful to evaluate adaptive, compensatory and pathobiochemical changes in the intracellular cytoskeleton, myofiber membrane integrity and the extracellular matrix in dystrophin-deficient skeletal muscle tissues.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
12
|
González-Arostegui LG, Rubio CP, Cerón JJ, Tvarijonaviciute A, Muñoz-Prieto A. Proteomics in dogs: a systematic review. Res Vet Sci 2021; 143:107-114. [PMID: 35007798 DOI: 10.1016/j.rvsc.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Proteomic analysis is having a rapid development as a method for the detection of biomarkers of diseases in dogs. Dogs in addition to their importance as companion animals, serve as important animal models for research. This study aims to systematically review evidence regarding the studies performed in proteomics in dogs, and specifically those made in serum, saliva, urine and/or plasma. Information searched in October 2020, January 2021 and August 2021, for English language publications of the last decade (2010-2020) were obtained from electronic databases. Screening, data extraction and risk of bias assessment were undertaken by two investigators. The risk of bias was evaluated using the Review Manager (RevMan 5) tool. Meta-analysis and case report studies were not included in this review. Through the screening process a total of 557 publications were identified after the removal of duplicates. Out of these, 65 were fully evaluated and 44 of these were included in the review. Most studies evaluated the proteome of disease and compared it with a healthy population, and most of the articles included were made on serum, followed by saliva. The overall risk of bias for all studies was high, due to an absence in the generation of random sequence. Overall proteomic analysis has allowed the discovery of new physiopathological pathways of diseases and potential biomarkers in the dog, which are addressed in this review.
Collapse
Affiliation(s)
- Luis Guillermo González-Arostegui
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain; Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain.
| | - Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 2021; 18:1073-1086. [PMID: 34890519 DOI: 10.1080/14789450.2021.2017776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
14
|
Jia B, Yu S, Yu D, Liu N, Zhang S, Wu A. Mycotoxin deoxynivalenol affects myoblast differentiation via downregulating cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112850. [PMID: 34607188 DOI: 10.1016/j.ecoenv.2021.112850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
As a common mycotoxin, deoxynivalenol (DON) contaminates cereal grains and feed in field or during processing and storage. DON elicits a spectrum of adverse effects in animals including anorexia and growth retardation. Especially, the presence of DON has also been detected in muscle, suggesting that DON may has the potential to affect the development of muscle. However, the relevant research is very rare and the molecular mechanism remains unclear. Myoblasts differentiation into multinucleated myotubes is one of the crucial steps of skeletal muscle development. In the present study, we investigated the effects of DON on differentiation of myoblasts using murine C2C12 cells model. The results indicated that DON dose-dependent inhibited the formation of myotubes in C2C12 cells. After performing omics techniques, a total of 149 differentially expressed genes were identified. The expression of cytoskeleton proteins and extracellular matrix (ECM) proteins were downregulated by DON. Furthermore, DON significantly downregulated the expression of integrin αv and integrin β5, leading to inhibition of the ECM-integrin receptor interaction. The focal adhesion kinase (FAK) and phosphorylated forms, ras-related C3 botulinum toxin substrate (RAC) and p21-activated kinases 1 (PAK1) were also downregulated by DON. Taken together, our findings suggest that DON has the potent to affect the differentiation of myoblasts via downregulating of cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway.
Collapse
Affiliation(s)
- Bingxuan Jia
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
15
|
Chen Y, Wei D, Deng M. Comparative Analysis of Serum Proteins Between Hepatitis B Virus Genotypes B and C Infection by DIA-Based Quantitative Proteomics. Infect Drug Resist 2021; 14:4701-4715. [PMID: 34795487 PMCID: PMC8592397 DOI: 10.2147/idr.s335666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose In clinical practice, the clinicopathological profiles and outcomes of patients infected with hepatitis B virus (HBV) are different between genotypes B and C. However, little is known about the potential mechanism and differences in specific biological pathways associated with the different genotype. This study aimed to compare the serum protein profile between patients infected with HBV genotype B and those infected with HBV genotype C. Patients and Methods A total of 54 serum samples from patients with chronic HBV genotype B infection and those with chronic HBV genotype C infection, and healthy controls were used for the proteomic analysis (n = 18 samples in per group). Serum proteomic profiles were analyzed using data-independent acquisition (DIA)-based liquid chromatography-mass spectrometry to identify differentially expressed proteins (up- or downregulation of at least 1.5-fold) between serum samples from HBV patients infected with HBV genotype B and those infected with genotype C. Results We identified 1010 proteins, 53 of which were differentially expressed between the serum samples of the healthy controls and those of HBV genotype B infected patients, and 59 that were differentially expressed between the samples of the healthy controls and those of HBV genotype C infected patients. Furthermore, our results indicated that two proteins identified as being differentially expressed (VWF and C8B) have potential as biomarkers for distinguishing genotype B infected HBV patients from those infected with genotype C. Conclusion The results of our DIA-based quantitative proteomic analysis revealed that HBV genotypes B and C are associated with different molecular profiles and may provide fundamental information for further detailed investigations of the molecular mechanism underlying these differences.
Collapse
Affiliation(s)
- Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China.,Department of Infectious Diseases, First Hospital of Jiaxing, Jiaxing, People's Republic of China
| | - Dahai Wei
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China.,Department of Infectious Diseases, First Hospital of Jiaxing, Jiaxing, People's Republic of China.,Institute of Hepatology, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| | - Min Deng
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China.,Department of Infectious Diseases, First Hospital of Jiaxing, Jiaxing, People's Republic of China.,Institute of Hepatology, Affiliated Hospital of Jiaxing University, Jiaxing, People's Republic of China
| |
Collapse
|
16
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
17
|
Song P, Li J. The proteomic data of liver in mice with hyperlipidemia. Data Brief 2021; 36:107050. [PMID: 34013003 PMCID: PMC8113717 DOI: 10.1016/j.dib.2021.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/06/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
Fructus Rosae Roxburghii (FRR) has been considered as edible and medicinal fruit possessing antiatherosclerotic effect [1], [2], [3], [4], [5], but the mechanism is still unclear. Hyperlipidemia (HLP) is the material basis for atherosclerosis (AS) formation [6,7]. In this study, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), lower high-density lipoprotein (HDL) and atherosclerotic index (ASI) in mice were analyzed under the action of FRR juice. Then differentially expressed proteins in liver were further analyzed by using TMT labeling and LC-MS/MS for better understanding the effect and molecular mechanism of FRR on diet-induced hyperlipidemic mice [8]. After the protein extraction and trypsin digestion, TMT labeling proteomic analysis were performed. The functions and KEGG signaling pathways of differentially expressed proteins were analyzed by bioinformatics methods. Hence, the potential antiatherosclerotic mechanism of FRR regulating blood lipids from protein level has great significance to explore new drug targets for AS.
Collapse
Affiliation(s)
| | - Jing Li
- Guizhou Medical University, China
| |
Collapse
|
18
|
Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes 2021; 9:9. [PMID: 33540575 PMCID: PMC7931087 DOI: 10.3390/proteomes9010009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The systematic bioanalytical characterization of the protein product of the DMD gene, which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan, dystrobrevins and syntrophins. Besides these core members of the dystrophin-glycoprotein complex, the wider dystrophin-associated network includes key proteins belonging to the intracellular cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma membrane proteins and cytosolic components. Here, we review the central role of the dystrophin complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force transmission to the extracellular region. The combination of optimized tissue extraction, subcellular fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatography and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Importantly, these biochemical and mass spectrometric surveys have identified additional members of the wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin, cytokeratin and a variety of signaling proteins and ion channels.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE24HH, UK;
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Hemmen Sabir
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Song P, Shen X. Proteomic analysis of liver in diet-induced Hyperlipidemic mice under Fructus Rosa roxburghii action. J Proteomics 2020; 230:103982. [PMID: 32927110 DOI: 10.1016/j.jprot.2020.103982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Fructus Rosae Roxburghii (FRR) has been considered as edible and medicinal fruit possessing antiatherosclerotic effect, but the mechanism is still unclear. HLP is material basis for AS formation. Under FRR action, TC, TG, LDL, HDL and ASI in serum were regulated to control level. Differentially expressed proteins in liver were analyzed by using TMT labeling and LC-MS/MS for better understanding the effect and molecular mechanism of FRR on diet-induced hyperlipidemic mice. In total, 4460 proteins were quantified, of which 469 proteins showed dramatic changes between each group. According to molecular functions, 25 differentially co-expressed proteins were divided into five categories: substance metabolism, energy transformation and signal transduction, transcription and translation, immune defense. 15 key proteins involved lipids metabolism, which were identified as Cyp7a1, Cyp3a11, Tm7sf2, COAT2, CSAD, RBP3, Lpin1, Dhrs4, Aldh1b1, GK, Acot 4, TSC22D1, PGFS, EHs, GSTM1. This suggested that FRR could maintain metabolic homeostasis by regulating the metabolism of fatty acids, biosynthesis of BAs and steroids, and production of LPOs. 20 oxidative lipids further confirmed their importance regulating lipids metabolism. It's first time potential antiatherosclerotic mechanism of FRR regulating blood lipids was explored from protein level, which is of great significance to explore new drug targets for AS. SIGNIFICANCE: Under the action of FRR juice, the blood lipids in mice were regulated to control level. By TMT proteomic analysis, the effect and molecular mechanism of FRR on diet-induced hyperlipidemic mice were further explored. 25 differentially co-expressed proteins obtained in three diet groups might cooperatively regulate the lipids metabolism and hepatic function of mice, thus maintaining the metabolism homeostasis. By lipidomics analysis, 20 oxidative lipids further confirmed the importance of ω-3 and ω-6 PUFAs in regulating the lipids metabolism. These findings provide an improved understanding for the regulation of FRR on the blood lipids and explores potential metabolic targets for AS prevention.
Collapse
Affiliation(s)
- Pingping Song
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The high Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high Educational Key laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), Guizhou Medical University, Guian New District, Guizhou 550000, China; Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550000, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The high Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high Educational Key laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), Guizhou Medical University, Guian New District, Guizhou 550000, China; Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, Guizhou 550000, China.
| |
Collapse
|
20
|
Al-Khalili Szigyarto C. Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Rev Proteomics 2020; 17:365-375. [PMID: 32713262 DOI: 10.1080/14789450.2020.1773806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early biomarker discovery studies have praised the value of their emerging results, predicting an unprecedented impact on health care. Biomarkers are expected to provide tests with increased specificity and sensitivity compared to existing measures, improve the decision-making process, and accelerate the development of therapies. For rare disorders, like Duchenne Muscular Dystrophy (DMD) such biomarkers can assist the development of therapies, therefore also helping to find a cure for the disease. AREA COVERED State-of-the-art technologies have been used to identify blood biomarkers for DMD and efforts have been coordinated to develop and promote translation of biomarkers for clinical practice. Biomarker translation to clinical practice is however, adjoined by challenges related to the complexity of the disease, involving numerous biological processes, and the limited sample resources. This review highlights the current progress on the development of biomarkers, describing the proteomics technologies used, the most promising findings and the challenges encountered. EXPERT OPINION Strategies for effective use of samples combined with orthogonal proteomics methods for protein quantification are essential for translating biomarkers to the patient's bed side. Progress is achieved only if strong evidence is provided that the biomarker constitutes a reliable indicator of the patient's health status for a specific context of use.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Science for Life Laboratory, KTH - Royal Institute of Technology , Solna, Sweden.,School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology , Stockholm, Sweden
| |
Collapse
|
21
|
An Omics View of Emery-Dreifuss Muscular Dystrophy. J Pers Med 2020; 10:jpm10020050. [PMID: 32549253 PMCID: PMC7354601 DOI: 10.3390/jpm10020050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Recent progress in Omics technologies has started to empower personalized healthcare development at a thorough biomolecular level. Omics have subsidized medical breakthroughs that have started to enter clinical proceedings. The use of this scientific know-how has surfaced as a way to provide a more far-reaching view of the biological mechanisms behind diseases. This review will focus on the discoveries made using Omics and the utility of these approaches for Emery–Dreifuss muscular dystrophy.
Collapse
|
22
|
Wang W, Wang B, Liu C, Yan J, Xiong X, Wang X, Yang J, Guo B, Huang C. Serum proteomic predicts effectiveness and reveals potential biomarkers for complications in liver transplant patients. Aging (Albany NY) 2020; 12:12119-12141. [PMID: 32530819 PMCID: PMC7343480 DOI: 10.18632/aging.103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Sophisticated postoperative complications limit the long-term clinical success of liver transplantation. Hence, early identification of biomarkers is essential for graft and patient survival. High-throughput serum proteomics technologies provide an opportunity to identify diagnostic and prognostic biomarkers. This study is aimed to identify serum diagnosis biomarkers for complications and monitor effectiveness. Serum samples from 10 paired pre- and post-liver transplant patients, 10 acute rejection (AR) patients, 9 ischemic-type biliary lesion (ITBL) patients, and 10 healthy controls were screened using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to explore divergence in polypeptide. Then, we used ELISA and western blot analysis to validate the expression of these potential biomarkers, and studied the correlation of proteomic profiles with clinical parameters. ACLY, FGA, and APOA1 were significantly lower in pre-operative patients compared with healthy controls, and these patients had modest recovery after transplantation. Downregulation of both, ACLY and FGA, was also observed in AR and ITBL patients. Furthermore, bioinformatics analysis was performed and the results suggested that the identified proteins were involved in glucolipid metabolism and the clotting cascade. Together, these findings suggest that ACLY, FGA, and APOA1 could be novel non-invasive and early biomarkers to detect complications and predict effectiveness of liver transplantation.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P R China
| | - Jing Yan
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an 716000, P R China
| | - Xiaofan Xiong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China
| | - Bo Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Health Science Center, Shaanxi, Xi'an 710061, P R China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, P R China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, P R China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, P R China
| |
Collapse
|
23
|
Gargan S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Identification of marker proteins of muscular dystrophy in the urine proteome from the mdx-4cv model of dystrophinopathy. Mol Omics 2020; 16:268-278. [PMID: 32211681 DOI: 10.1039/c9mo00182d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the protein constituents of urine present a dynamic proteome that can reflect a variety of disease-related alterations in the body, the mass spectrometric survey of proteome-wide changes in urine promises new insights into pathogenic mechanisms. Urine can be investigated in a completely non-invasive way and provides valuable biomedical information on body-wide changes. In this report, we have focused on the urine proteome in X-linked muscular dystrophy using the established mdx-4cv mouse model of dystrophinopathy. In order to avoid potential artefacts due to the manipulation of the biofluid proteome prior to mass spectrometry, crude urine specimens were analyzed without the prior usage of centrifugation steps or concentration procedures. Comparative proteomics revealed 21 increased and 8 decreased proteins out of 870 identified urinary proteoforms using 50 μl of biofluid per investigated sample, i.e. 14 wild type versus 14 mdx-4cv specimens. Promising marker proteins that were almost exclusively found in mdx-4cv urine included nidogen, parvalbumin and titin. Interestingly, the mass spectrometric identification of urine-associated titin revealed a wide spread of peptides over the sequence of this giant muscle protein. The newly established urinomic signature of dystrophinopathy might be helpful for the design of non-invasive assays to improve diagnosis, prognosis, therapy-monitoring and evaluation of potential harmful side effects of novel treatments in the field of muscular dystrophy research.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland.
| | | | | | | | | |
Collapse
|
24
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Rev Proteomics 2020; 17:137-148. [PMID: 32067530 DOI: 10.1080/14789450.2020.1732214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Duchenne muscular dystrophy is a neuromuscular disorder, which is caused by abnormalities in the DMD gene that encodes the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting, dystrophinopathy also affects non-skeletal muscle tissues, including cells in the cardio-respiratory system, the central nervous system, the liver and the kidney.Areas covered: This review summarizes the proteomic characterization of a key class of lipid chaperones, the large family of fatty acid binding proteins, and their potential role in muscular dystrophy. Recent proteomic surveys using animal models and patient specimens are reviewed. Pathobiochemical changes in specific proteoforms of fatty acid binding protein in the multi-system pathology of dystrophinopathy are discussed.Expert opinion: The mass spectrometric identification of distinct changes in fatty acid binding proteins in muscle, heart, liver, kidney and serum demonstrates that considerable alterations occur in key steps of metabolite transport and fat metabolism in muscular dystrophy. These new findings might be helpful to further develop a comprehensive biomarker signature of metabolic changes in X-linked muscular dystrophy, which should improve (i) our understanding of complex pathobiochemical changes due to dystrophin deficiency, (ii) the identification of novel therapeutic targets, and (iii) the design of differential diagnostic, prognostic and therapy-monitoring approaches.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
25
|
Dowling P, Murphy S, Zweyer M, Raucamp M, Swandulla D, Ohlendieck K. Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn 2019; 19:739-755. [PMID: 31359811 DOI: 10.1080/14737159.2019.1648214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Progressive skeletal muscle wasting is the manifesting symptom of Duchenne muscular dystrophy, an X-linked inherited disorder triggered by primary abnormalities in the DMD gene. The almost complete loss of dystrophin isoform Dp427 causes a multi-system pathology that features in addition to skeletal muscle weakness also late-onset cardio-respiratory deficiencies, impaired metabolism and abnormalities in the central nervous system. Areas covered: This review focuses on the mass spectrometry-based proteomic characterization of X-linked muscular dystrophy with special emphasis on the identification of novel biomarker candidates in skeletal muscle tissues, as well as non-muscle tissues and various biofluids. Individual sections focus on molecular and cellular aspects of the pathogenic changes in dystrophinopathy, proteomic workflows used in biomarker research, the proteomics of the dystrophin-glycoprotein complex and the potential usefulness of newly identified protein markers involved in fibre degeneration, fibrosis and inflammation. Expert opinion: The systematic application of large-scale proteomic surveys has identified a distinct cohort of both tissue- and biofluid-associated protein species with considerable potential for improving diagnostic, prognostic and therapy-monitoring procedures. Novel proteomic markers include components involved in fibre contraction, cellular signalling, ion homeostasis, cellular stress response, energy metabolism and the immune response, as well as maintenance of the cytoskeletal and extracellular matrix.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University , Newcastle upon Tyne , UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| |
Collapse
|
26
|
Whittaker K, Burgess R, Jones V, Yang Y, Zhou W, Luo S, Wilson J, Huang R. Quantitative proteomic analyses in blood: A window to human health and disease. J Leukoc Biol 2019; 106:759-775. [PMID: 31329329 DOI: 10.1002/jlb.mr1118-440r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | | | | | - Shuhong Luo
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
| | | | - Ruo‐Pan Huang
- RayBiotech Life Norcross Georgia USA
- RayBiotech Life Guangzhou Guangdong China
- South China Biochip Research Center Guangzhou Guangdong China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou Medical University Guangzhou China
- Guangdong Provincial Hospital of Chinese Medicine Guangzhou China
| |
Collapse
|
27
|
Forcina L, Miano C, Scicchitano BM, Musarò A. Signals from the Niche: Insights into the Role of IGF-1 and IL-6 in Modulating Skeletal Muscle Fibrosis. Cells 2019; 8:E232. [PMID: 30862132 PMCID: PMC6468756 DOI: 10.3390/cells8030232] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Muscle regeneration, characterized by the activation and proliferation of satellite cells and other precursors, is accompanied by an inflammatory response and the remodeling of the extracellular matrix (ECM), necessary to remove cellular debris and to mechanically support newly generated myofibers and activated satellite cells. Muscle repair can be considered concluded when the tissue architecture, vascularization, and innervation have been restored. Alterations in these connected mechanisms can impair muscle regeneration, leading to the replacement of functional muscle tissue with a fibrotic scar. In the present review, we will discuss the cellular mediators of fibrosis and how the altered expression and secretion of soluble mediators, such as IL-6 and IGF-1, can modulate regulatory networks involved in the altered regeneration and fibrosis during aging and diseases.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| | - Bianca Maria Scicchitano
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Via A. Scarpa, 14, 00161 Rome, Italy.
| |
Collapse
|
28
|
Murphy S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of giant skeletal muscle proteins. Expert Rev Proteomics 2019; 16:241-256. [DOI: 10.1080/14789450.2019.1575205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
29
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic identification of elevated saliva kallikrein levels in the mdx-4cv mouse model of Duchenne muscular dystrophy. Biochem Biophys Rep 2018; 18:100541. [PMID: 31193643 PMCID: PMC6537026 DOI: 10.1016/j.bbrep.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
Dystrophinopathies are multi-system disorders that affect the skeletal musculature, the cardio-respiratory system and the central nervous system. The systematic screening of suitable biofluids for released or altered proteins promises new insights into the highly complex pathophysiology of X-linked muscular dystrophy. However, standard detection approaches using antibody-based assays often fail to reproducibly detect low-abundance protein isoforms in dilute biological fluids. In contrast, mass spectrometric screening approaches enable the proteome-wide identification of minor protein changes in biofluids. This report describes the findings from the comparative proteomic analysis of whole saliva samples from wild type versus the established mdx-4cv mouse model of highly progressive muscular dystrophy, focusing on the kallikrein protein family. Kallikrein-1 (Klk1) and 13 Klk1-related peptidases were identified in saliva and serum from normal mice. Comparative proteomics revealed elevated saliva levels of the Klk1-related peptidases Klk1-b1, Klk1-b5 and Klk-b22, as well as an increased Klk-1 concentration, which agrees with higher Klk-1 levels in serum from mdx-4cv mice. This indicates altered cellular signaling, extracellular matrix remodeling and an altered immune response in the mdx-4cv mouse, and establishes liquid biopsy procedures as suitable bioanalytical tools for the systematic survey of complex pathobiochemical changes in animal models of muscular dystrophy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Rustam R Mundegar
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|