1
|
Yang Y, Li S, Zhang L, Fu H, Zhou G, Chen M. Skin and soft tissue infection of Nontuberculous mycobacterium after injection lipolysis. J Cosmet Dermatol 2023; 22:1207-1212. [PMID: 36606392 DOI: 10.1111/jocd.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Injection lipolysis is used for body and face contouring due to its minimal invasiveness and cost-effectiveness, but related complications such as nontuberculous mycobacterium infection significantly affect its clinical application. AIMS This study aimed to review the literature on NTM infection after injection lipolysis. METHODS We conducted a literature review of scientific journals published in Medline and PubMed up to September 2022 on patients with NTM skin and soft tissue infections. We used the keywords: nontuberculous mycobacterium, infection, injection lipolysis, and lipolytic solution in various combinations with the Boolean operators AND, OR, and NOT. Only articles available in English and full version publications were considered for this review. Here, we reviewed the relevant mechanisms and drugs for injectable lipolysis and analyzed the possible correlation between NTM infection and injection lipolysis. We also summarize methods for the diagnosis and treatment of NTM infections and present some perspectives on this therapy. RESULTS Many patients with NTM infections had a history of fat-related surgery or therapy. NTM infection after injection lipolysis may be related to inadequate disinfection and sterilization of injection equipment and clinical procedures, the unqualified medication itself and free fatty acids released during injection lipolysis. Currently, diagnosis and treatment of NTM infection after lipolysis injections remains challenging. CONCLUSIONS Injection lipolysis represents a helpful option for local fat reduction. Doctors should strictly abide by the aseptic operation standards and use qualified products for there is a correlation between skin and soft tissue infection of nontuberculous mycobacterium and injection lipolysis. Providers should understand the mechanism, indications, and associated risks of injection lipolysis when injecting fat-dissolving drugs to reduce localized fat.
Collapse
Affiliation(s)
- Yi Yang
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Shiyi Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Lixia Zhang
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Huijuan Fu
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Guiwen Zhou
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Minliang Chen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Monopoli A, Ventura G, Aloia A, Ciriaco F, Nacci A, Cataldi TRI, Calvano CD. Synthesis and Investigation of Novel CHCA-Derived Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Lipids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082565. [PMID: 35458772 PMCID: PMC9028824 DOI: 10.3390/molecules27082565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
A significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances. We have taken this rational design one step further by developing and optimizing new MALDI matrices with a range of modifications on the CHCA core, involving different functionalities and substituents. Of particular interest was the understanding of the electron-withdrawing (e.g., nitro-) or donating (e.g., methoxy-) effects along with the extent of conjugation on the ionization efficiency. In the present work, ten matrices were designed on a reasonable basis, synthesized, and characterized by NMR and UV spectroscopies and laser desorption ionization. With the assistance of these putative MALDI matrices, samples containing phospholipids (PL), and neutral di-/tri-acylglycerols (DAG, TAG) were investigated using milk, fish, blood, and human plasma extracts. In comparison with CHCA and ClCCA, four of them, viz. [(2E,4E)-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienoic acid] (1), [(2E,4E)-2-cyano-5-(4-nitrophenyl)penta-2,4-dienoic acid] (2), [(E)-2-cyano-3-(6-methoxynaphthalen-2-yl)acrylic acid] (6) and [(E)-2-cyano-3-(naphthalen-2-yl)acrylic acid] (7) displayed good to even excellent performances as MALDI matrices in terms of ionization capability, interference-free spectra, S/N ratio, and reproducibility. Especially compound 7 (cyano naphthyl acrylic acid, CNAA) was the election matrix for PL analysis and matrix 2 (cyano nitrophenyl dienoic acid, CNDA) for neutral lipids such as DAG and TAG in positive ion mode.
Collapse
Affiliation(s)
- Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Andrea Aloia
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Angelo Nacci
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- CNR—Istituto di Chimica dei Composti Organometallici (ICCOM), Bari Section, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cosima D. Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| |
Collapse
|
3
|
Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids. Anal Bioanal Chem 2021; 413:2695-2708. [PMID: 33564925 DOI: 10.1007/s00216-020-03128-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is a common molecular imaging modality used to characterise the abundance and spatial distribution of lipids in situ. There are several technical challenges predominantly involving sample pre-treatment and preparation which have complicated the analysis of clinical tissues by MALDI-MSI. Firstly, the common embedding of samples in optimal cutting temperature (O.C.T.), which contains high concentrations of polyethylene glycol (PEG) polymers, causes analyte signal suppression during mass spectrometry (MS) by competing for available ions during ionisation. This suppressive effect has constrained the application of MALDI-MSI for the molecular mapping of clinical tissues. Secondly, the complexity of the mass spectra is obtained by the formation of multiple adduct ions. The process of analyte ion formation during MALDI can generate multiple m/z peaks from a single lipid species due to the presence of alkali salts in tissues, resulting in the suppression of protonated adduct formation and the generation of multiple near isobaric ions which produce overlapping spatial distributions. Presented is a method to simultaneously remove O.C.T. and endogenous salts. This approach was applied to lipid imaging in order to prevent analyte suppression, simplify data interpretation, and improve sensitivity by promoting lipid protonation and reducing the formation of alkali adducts.
Collapse
|
4
|
Riboni N, Quaranta A, Motwani HV, Österlund N, Gräslund A, Bianchi F, Ilag LL. Solvent-Assisted Paper Spray Ionization Mass Spectrometry (SAPSI-MS) for the Analysis of Biomolecules and Biofluids. Sci Rep 2019; 9:10296. [PMID: 31311939 PMCID: PMC6635430 DOI: 10.1038/s41598-019-45358-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022] Open
Abstract
Paper Spray Ionization (PSI) is commonly applied for the analysis of small molecules, including drugs, metabolites, and pesticides in biological fluids, due to its high versatility, simplicity, and low costs. In this study, a new setup called Solvent Assisted Paper Spray Ionization (SAPSI), able to increase data acquisition time, signal stability, and repeatability, is proposed to overcome common PSI drawbacks. The setup relies on an integrated solution to provide ionization potential and constant solvent flow to the paper tip. Specifically, the ion source was connected to the instrument fluidics along with the voltage supply systems, ensuring a close control over the ionization conditions. SAPSI was successfully applied for the analysis of different classes of biomolecules: amyloidogenic peptides, proteins, and N-glycans. The prolonged analysis time allowed real-time monitoring of processes taking places on the paper tip, such as amyloid peptides aggregation and disaggregation phenomena. The enhanced signal stability allowed to discriminate protein species characterized by different post translational modifications and adducts with electrophilic compounds, both in aqueous solutions and in biofluids, such as serum and cerebrospinal fluid, without any sample pretreatment. In the next future, application to clinical relevant modifications, could lead to the development of quick and cost-effective diagnostic tools.
Collapse
Affiliation(s)
- Nicoló Riboni
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden.,Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, IT, Italy
| | - Alessandro Quaranta
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden
| | - Hitesh V Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE, Sweden
| | - Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, IT, Italy
| | - Leopold L Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, SE, Sweden.
| |
Collapse
|
5
|
Leopold J, Popkova Y, Engel KM, Schiller J. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules 2018; 8:biom8040173. [PMID: 30551655 PMCID: PMC6316665 DOI: 10.3390/biom8040173] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) is one of the most successful “soft” ionization methods in the field of mass spectrometry and enables the analysis of a broad range of molecules, including lipids. Although the details of the ionization process are still unknown, the importance of the matrix is commonly accepted. Both, the development of and the search for useful matrices was, and still is, an empirical process, since properties like vacuum stability, high absorption at the laser wavelength, etc. have to be fulfilled by a compound to become a useful matrix. This review provides a survey of successfully used MALDI matrices for the lipid analyses of complex biological samples. The advantages and drawbacks of the established organic matrix molecules (cinnamic or benzoic acid derivatives), liquid crystalline matrices, and mixtures of common matrices will be discussed. Furthermore, we will deal with nanocrystalline matrices, which are most suitable to analyze small molecules, such as free fatty acids. It will be shown that the analysis of mixtures and the quantitative analysis of small molecules can be easily performed if the matrix is carefully selected. Finally, some basic principles of how useful matrix compounds can be “designed” de novo will be introduced.
Collapse
Affiliation(s)
- Jenny Leopold
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| | - Yulia Popkova
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| | - Kathrin M Engel
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| | - Jürgen Schiller
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16/18, Leipzig University, D-04107 Leipzig, Germany.
| |
Collapse
|