1
|
Zhou Z, Liu Y, Ishigaki Y, Yamaguchi S, Chen J, Liu X. Microbial protease supplementation improves gastric emptying and protein digestive fate of beef for the elderly under dynamic in vitro digestion. Food Res Int 2025; 202:115721. [PMID: 39967173 DOI: 10.1016/j.foodres.2025.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Elderly individuals experience age-related declines in digestive function, which can hinder the digestion of dietary proteins and thereby negatively impact overall health. This study provides a comprehensive understanding of the protein digestive fate of beef with Protease-DS supplementation by analyzing gastric emptying behavior and amino acid and peptide profiles during a simulated in vitro elderly digestion process. The adult model exhibited superior gastric emptying capacity, with relatively rapid and early expulsion of gastric digesta into the intestinal segment. Additionally, the underperforming elderly model showed notable improvement in the emptying process with Protease-DS supplementation, achieving a rate of 0.0110 min-1, which was close to the adult model of 0.0125 min-1 and significantly faster than the elderly model of 0.0080 min-1. Protein digestibility in the elderly model was significantly enhanced with Protease-DS supplementation, increasing from 55.62 % to 63.60 %, approaching that of the adult model (69.60 %). Protease-DS significantly improved the essential amino acid score (EAAS), particularly for methionine + cysteine, phenylalanine + tyrosine, lysine, and leucine. Furthermore, it enhanced the release of unique polypeptide fragments, distinct from those in both the adult and elderly models, and demonstrated significant anti-amnesic and antithrombotic bioactive functions, highlighting its potential to improve memory and reduce blood clotting. This study provides guidance for elderly consumers on enhancing dietary protein digestion through protease supplementation, presenting it as an effective strategy to address protein deficiency and improve health and well-being.
Collapse
Affiliation(s)
- Zhitong Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China
| | - Yang Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China
| | - Yuki Ishigaki
- Amano Enzyme Inc. Innovation Center, Kakamigahara, Japan
| | | | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China
| | - Xiao Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122 China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122 China.
| |
Collapse
|
2
|
Jiao X, Li X, Zhang N, Zhang W, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Postmortem Muscle Proteome Characteristics of Silver Carp ( Hypophthalmichthys molitrix): Insights from Full-Length Transcriptome and Deep 4D Label-Free Proteomic. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1376-1390. [PMID: 38165648 DOI: 10.1021/acs.jafc.3c06902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The coverage of the protein database directly determines the results of shotgun proteomics. In this study, PacBio single-molecule real-time sequencing technology was performed on postmortem silver carp muscle transcripts. A total of 42.43 Gb clean data, 35,834 nonredundant transcripts, and 15,413 unigenes were obtained. In total, 99.32% of the unigenes were successfully annotated and assigned specific functions. PacBio long-read isoform sequencing (Iso-Seq) analysis can provide more accurate protein information with a higher proportion of complete coding sequences and longer lengths. Subsequently, 2671 proteins were identified in deep 4D proteomics informed by a full-length transcriptomics technique, which has been shown to improve the identification of low-abundance muscle proteins and potential protein isoforms. The feature of the sarcomeric protein profile and information on more than 30 major proteins in the white dorsal muscle of silver carp were reported here for the first time. Overall, this study provides valuable transcriptome data resources and the comprehensive muscle protein information detected to date for further study into the processing characteristic of early postmortem fish muscle, as well as a spectral library for data-independent acquisition and data processing. This batch of muscle-specific dependent acquisition data is available via PRIDE with identifier PXD043702.
Collapse
Affiliation(s)
- Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingying Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenhai Zhang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Anjoy Foods Group Co., Ltd., Xiamen 361022, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- Anjoy Foods Group Co., Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Johnson LG, Zhai C, Prusa KJ, Nair MN, Prenni JE, Chaparro JM, Huff-Lonergan E, Lonergan SM. Proteomic and metabolomic profiling of aged pork loin chops reveals molecular phenotypes linked to pork tenderness. J Anim Sci 2024; 102:skae355. [PMID: 39563021 PMCID: PMC11630860 DOI: 10.1093/jas/skae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
The ability to predict fresh pork tenderness and quality is hindered by an incomplete understanding of molecular factors that influence these complex traits. It is hypothesized that a comprehensive description of the metabolomic and proteomic phenotypes associated with variation in pork tenderness and quality will enhance the understanding and inform the development of rapid and nondestructive methods to measure pork quality. The objective of this investigation was to examine the proteomic and metabolomic profiles of ~2-wk aged pork chops categorized across instrumental tenderness groups. One hundred pork loin chops from a larger sample (N = 120) were assigned to one of the four categories (n = 25) based on instrumental star probe value (Category A, x¯ =4.23 kg, 3.43-4.55 kg; Category B, x¯ =4.79 kg, 4.66-5.00 kg; Category C, x¯ =5.43 kg, 5.20-5.64 kg; and Category D, x¯ =6.21 kg, 5.70-7.41 kg). Soluble protein from ~2 wk aged pork loin was prepared using a low-ionic-strength buffer. Proteins were digested with trypsin, labeled with 11-plex isobaric tandem mass tag reagents, and identified and quantified using a Q-Exactive Mass Spectrometer. Metabolites were extracted in 80% methanol from lyophilized and homogenized tissue samples. Derivatized metabolites were identified and quantified using gas chromatography-mass spectrometry. Between Categories A and D, 84 proteins and 22 metabolites were differentially abundant (adjusted P < 0.05). Fewer differences were detected in comparison between categories with less divergent tenderness measures. The molecular phenotype of the more tender (Category A) aged chops is consistent with a slower and less extended pH decline and markedly less abundance of glycolytic metabolites. The presence and greater abundance of proteins in the low-ionic-strength extract, including desmin, filamin C, calsequestrin, and fumarate hydratase, indicates a greater disruption of sarcoplasmic reticulum and mitochondrial membranes and the degradation and release of structural proteins from the continuous connections of myofibrils and the sarcolemma.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
8
|
Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes 2021; 9:9. [PMID: 33540575 PMCID: PMC7931087 DOI: 10.3390/proteomes9010009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The systematic bioanalytical characterization of the protein product of the DMD gene, which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan, dystrobrevins and syntrophins. Besides these core members of the dystrophin-glycoprotein complex, the wider dystrophin-associated network includes key proteins belonging to the intracellular cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma membrane proteins and cytosolic components. Here, we review the central role of the dystrophin complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force transmission to the extracellular region. The combination of optimized tissue extraction, subcellular fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatography and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Importantly, these biochemical and mass spectrometric surveys have identified additional members of the wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin, cytokeratin and a variety of signaling proteins and ion channels.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE24HH, UK;
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Hemmen Sabir
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Gargan S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Identification of marker proteins of muscular dystrophy in the urine proteome from the mdx-4cv model of dystrophinopathy. Mol Omics 2020; 16:268-278. [PMID: 32211681 DOI: 10.1039/c9mo00182d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the protein constituents of urine present a dynamic proteome that can reflect a variety of disease-related alterations in the body, the mass spectrometric survey of proteome-wide changes in urine promises new insights into pathogenic mechanisms. Urine can be investigated in a completely non-invasive way and provides valuable biomedical information on body-wide changes. In this report, we have focused on the urine proteome in X-linked muscular dystrophy using the established mdx-4cv mouse model of dystrophinopathy. In order to avoid potential artefacts due to the manipulation of the biofluid proteome prior to mass spectrometry, crude urine specimens were analyzed without the prior usage of centrifugation steps or concentration procedures. Comparative proteomics revealed 21 increased and 8 decreased proteins out of 870 identified urinary proteoforms using 50 μl of biofluid per investigated sample, i.e. 14 wild type versus 14 mdx-4cv specimens. Promising marker proteins that were almost exclusively found in mdx-4cv urine included nidogen, parvalbumin and titin. Interestingly, the mass spectrometric identification of urine-associated titin revealed a wide spread of peptides over the sequence of this giant muscle protein. The newly established urinomic signature of dystrophinopathy might be helpful for the design of non-invasive assays to improve diagnosis, prognosis, therapy-monitoring and evaluation of potential harmful side effects of novel treatments in the field of muscular dystrophy research.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland.
| | | | | | | | | |
Collapse
|
10
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Rev Proteomics 2020; 17:137-148. [PMID: 32067530 DOI: 10.1080/14789450.2020.1732214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Duchenne muscular dystrophy is a neuromuscular disorder, which is caused by abnormalities in the DMD gene that encodes the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting, dystrophinopathy also affects non-skeletal muscle tissues, including cells in the cardio-respiratory system, the central nervous system, the liver and the kidney.Areas covered: This review summarizes the proteomic characterization of a key class of lipid chaperones, the large family of fatty acid binding proteins, and their potential role in muscular dystrophy. Recent proteomic surveys using animal models and patient specimens are reviewed. Pathobiochemical changes in specific proteoforms of fatty acid binding protein in the multi-system pathology of dystrophinopathy are discussed.Expert opinion: The mass spectrometric identification of distinct changes in fatty acid binding proteins in muscle, heart, liver, kidney and serum demonstrates that considerable alterations occur in key steps of metabolite transport and fat metabolism in muscular dystrophy. These new findings might be helpful to further develop a comprehensive biomarker signature of metabolic changes in X-linked muscular dystrophy, which should improve (i) our understanding of complex pathobiochemical changes due to dystrophin deficiency, (ii) the identification of novel therapeutic targets, and (iii) the design of differential diagnostic, prognostic and therapy-monitoring approaches.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Dowling P, Murphy S, Zweyer M, Raucamp M, Swandulla D, Ohlendieck K. Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn 2019; 19:739-755. [PMID: 31359811 DOI: 10.1080/14737159.2019.1648214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Progressive skeletal muscle wasting is the manifesting symptom of Duchenne muscular dystrophy, an X-linked inherited disorder triggered by primary abnormalities in the DMD gene. The almost complete loss of dystrophin isoform Dp427 causes a multi-system pathology that features in addition to skeletal muscle weakness also late-onset cardio-respiratory deficiencies, impaired metabolism and abnormalities in the central nervous system. Areas covered: This review focuses on the mass spectrometry-based proteomic characterization of X-linked muscular dystrophy with special emphasis on the identification of novel biomarker candidates in skeletal muscle tissues, as well as non-muscle tissues and various biofluids. Individual sections focus on molecular and cellular aspects of the pathogenic changes in dystrophinopathy, proteomic workflows used in biomarker research, the proteomics of the dystrophin-glycoprotein complex and the potential usefulness of newly identified protein markers involved in fibre degeneration, fibrosis and inflammation. Expert opinion: The systematic application of large-scale proteomic surveys has identified a distinct cohort of both tissue- and biofluid-associated protein species with considerable potential for improving diagnostic, prognostic and therapy-monitoring procedures. Novel proteomic markers include components involved in fibre contraction, cellular signalling, ion homeostasis, cellular stress response, energy metabolism and the immune response, as well as maintenance of the cytoskeletal and extracellular matrix.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University , Newcastle upon Tyne , UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| |
Collapse
|
12
|
Zhang M, Lan D. [Research advances in limb-girdle muscular dystrophy type 2Q]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:839-844. [PMID: 31416513 PMCID: PMC7389895 DOI: 10.7499/j.issn.1008-8830.2019.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Limb-girdle muscular dystrophy (LGMD) is a group of muscular dystrophies with predominantly proximal muscular weakness, and some genes associated with this disease have been identified at present. LGMD type 2Q (LGMD2Q) is a subtype of LGMD and is associated with PLEC gene mutation. Major phenotypes of PLEC gene mutation include epidermolysis bullosa with late-onset muscular dystrophy and epidermolysis bullosa with other lesions. LGMD2Q without skin lesions is rarely reported. This article reviews the pathogenic gene PLEC and clinical manifestations of LGMD2Q, so as to deepen the understanding of the pathogenic gene and phenotype of LGMD2Q.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | | |
Collapse
|
13
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
14
|
Murphy S, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic profiling of the mouse diaphragm and refined mass spectrometric analysis of the dystrophic phenotype. J Muscle Res Cell Motil 2019; 40:9-28. [PMID: 30888583 DOI: 10.1007/s10974-019-09507-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The diaphragm is a crucial muscle involved in active inspiration and whole body homeostasis. Previous biochemical, immunochemical and cell biological investigations have established the distribution and fibre type-specific expression of key diaphragm proteins. Building on these findings, it was of interest to establish the entire experimentally assessable diaphragm proteome and verify the presence of specific protein isoforms within this specialized subtype of skeletal muscle. A highly sensitive Orbitrap Fusion Tribrid mass spectrometer was used for the systematic identification of the mouse diaphragm-associated protein population. Proteomics established 2925 proteins by high confidence peptide identification. Bioinformatics was used to determine the distribution of the main protein classes, biological processes and subcellular localization within the diaphragm proteome. Following the establishment of the respiratory muscle proteome with special emphasis on protein isoform expression in the contractile apparatus, the extra-sarcomeric cytoskeleton, the extracellular matrix and the excitation-contraction coupling apparatus, the mass spectrometric analysis of the diaphragm was extended to the refined identification of proteome-wide changes in X-linked muscular dystrophy. The comparative mass spectrometric profiling of the dystrophin-deficient diaphragm from the mdx-4cv mouse model of Duchenne muscular dystrophy identified 289 decreased and 468 increased protein species. Bioinformatics was employed to analyse the clustering of changes in protein classes and potential alterations in interaction patterns of proteins involved in metabolism, the contractile apparatus, proteostasis and the extracellular matrix. The detailed pathoproteomic profiling of the mdx-4cv diaphragm suggests highly complex alterations in a variety of crucial cellular processes due to deficiency in the membrane cytoskeletal protein dystrophin.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|