1
|
Nakane K, Yagi K, Yajima S, Nomura S, Sugimoto M, Seto Y. Salivary metabolomic biomarkers for esophageal and gastric cancers by liquid chromatography-mass spectrometry. Cancer Sci 2024; 115:3089-3098. [PMID: 39004809 PMCID: PMC11463073 DOI: 10.1111/cas.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Early detection of esophageal and gastric cancers is essential for patients' prognosis; however, optimal noninvasive screening tests are currently not available. Saliva is a biofluid that is readily available, allowing for frequent screening tests. Thus, we explored salivary diagnostic biomarkers for esophageal and gastric cancers using metabolomic analyses. Saliva samples were collected from patients with esophageal (n = 50) and gastric cancer (n = 63), and patients without cancer as controls (n = 20). Salivary metabolites were analyzed by liquid chromatography-mass spectrometry to identify salivary biomarkers. We also examined the metabolic profiles of gastric cancer tissues and compared them with the salivary biomarkers. The sensitivity of the diagnostic models based on salivary biomarkers was assessed by comparing it with that of serum tumor markers. Additionally, using postoperative saliva samples collected from patients with gastric cancer, we analyzed the changes in the biomarkers' concentrations before and after surgery. Cytosine was detected as a salivary biomarker for gastric cancer, and cytosine, 2-oxoglutarate, and arginine were detected as salivary biomarkers for esophageal cancer. Cytidine, a cytosine nucleotide, showed decreased concentrations in gastric cancer tissues. The sensitivity of the diagnostic models for esophageal and gastric cancers was 66.0% and 47.6%, respectively, while that of serum tumor markers was 40%. Salivary cytosine concentration increased significantly postoperatively relative to the preoperative value. In summary, we identified salivary biomarkers for esophageal and gastric cancers, which showed diagnostic sensitivity at least comparable to that of serum tumor markers. Salivary metabolomic tests could be promising screening tests for these types of cancer.
Collapse
Affiliation(s)
- Kosuke Nakane
- Department of Gastrointestinal Surgery, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Koichi Yagi
- Department of Gastrointestinal Surgery, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Sho Yajima
- Department of Gastrointestinal Surgery, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Masahiro Sugimoto
- Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of MedicineUniversity of TokyoTokyoJapan
| |
Collapse
|
2
|
Bel’skaya LV, Sarf EA, Solomatin DV. Free Salivary Amino Acid Profile in Breast Cancer: Clinicopathological and Molecular Biological Features. Curr Issues Mol Biol 2024; 46:5614-5631. [PMID: 38921007 PMCID: PMC11202888 DOI: 10.3390/cimb46060336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
The study of salivary amino acid profiles has attracted the attention of researchers, since amino acids are actively involved in most metabolic processes, including breast cancer. In this study, we analyzed the amino acid profile of saliva in a sample including all molecular biological subtypes of breast cancer to obtain a more complete picture and evaluate the potential utility of individual amino acids or their combinations for diagnostic purposes. This study included 116 patients with breast cancer, 24 patients with benign breast disease, and 25 healthy controls. From all patients, strictly before the start of treatment, saliva samples were collected, and the quantitative content of 26 amino acids was determined. Statistically significant differences between the three groups are shown in the content of Asp, Gly, Leu + Ile, Orn, Phe, Pro, Thr, and Tyr. To differentiate the three groups from each other, a decision tree was built. To construct it, we selected those amino acids for which the change in concentrations in the subgroups was multidirectional (GABA, Hyl, Arg, His, Pro, and Car). For the first time, it is shown that the amino acid profile of saliva depends on the molecular biological subtype of breast cancer. The most significant differences are shown for the luminal B HER2-positive and TNBC subgroups. In our opinion, it is critically important to consider the molecular biological subtype of breast cancer when searching for potential diagnostic markers.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Elena A. Sarf
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
3
|
Li Z, Sun C, Jia K, Wang X, Han J, Chen J, Wang J, Liu H, Nie Z. Biofluid Metabolic Profiling for Lung Cancer Screening via Reactive Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Anal Chem 2023; 95:12062-12070. [PMID: 37534414 DOI: 10.1021/acs.analchem.3c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Lung cancer (LC) has the highest mortality rate among various cancer diseases. Developing an early screening method for LC with high classification accuracy is essential. Herein, 2-hydrazinoquinoline (2-HQ) is utilized as a dual-mode reactive matrix for metabolic fingerprint analysis and LC screening via matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Metabolites in both positive mode and negative mode can be detected using 2-HQ as the matrix, and derivative analysis of aldehyde and ketone compounds can be achieved simultaneously. Hundreds of serum and urine samples from LC patients and healthy volunteers were analyzed. Combined with machine learning, LC patients and healthy volunteers were successfully distinguished with a high area under the curve value (0.996 for blind serum samples and 0.938 for urine). The MS signal was identified for metabolic profiling, and dysregulated metabolites of the LC group were analyzed. The above results showed that this method has great potential for rapid screening of LC.
Collapse
Affiliation(s)
- Zhengzhou Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Alapati S, Fortuna G, Ramage G, Delaney C. Evaluation of Metabolomics as Diagnostic Targets in Oral Squamous Cell Carcinoma: A Systematic Review. Metabolites 2023; 13:890. [PMID: 37623834 PMCID: PMC10456490 DOI: 10.3390/metabo13080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, high-throughput technologies have facilitated the widespread use of metabolomics to identify biomarkers and targets for oral squamous cell carcinoma (OSCC). As a result, the primary goal of this systematic review is to identify and evaluate metabolite biomarkers and their pathways for OSCC that featured consistently across studies despite methodological variations. Six electronic databases (Medline, Cochrane, Web of Science, CINAHL, ProQuest, and Embase) were reviewed for the longitudinal studies involving OSCC patients and metabolic marker analysis (in accordance with PRISMA 2020). The studies included ranged from the inception of metabolomics in OSCC (i.e., 1 January 2007) to 30 April 2023. The included studies were then assessed for their quality using the modified version of NIH quality assessment tool and QUADOMICS. Thirteen studies were included after screening 2285 studies. The majority of the studies were from South Asian regions, and metabolites were most frequently derived from saliva. Amino acids accounted for more than quarter of the detected metabolites, with glutamate and methionine being the most prominent. The top dysregulated metabolites indicated dysregulation of six significantly enriched pathways including aminoacyl-tRNA biosynthesis, glutathione metabolism and arginine biosynthesis with the false discovery rate (FDR) <0.05. Finally, this review highlights the potential of metabolomics for early diagnosis and therapeutic targeting of OSCC. However, larger studies and standardized protocols are needed to validate these findings and make them a clinical reality.
Collapse
Affiliation(s)
- Susanth Alapati
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| | - Giulio Fortuna
- Department of Oral Medicine, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| |
Collapse
|
5
|
Salivary Polyamines Help Detect High-Risk Patients with Pancreatic Cancer: A Prospective Validation Study. Int J Mol Sci 2023; 24:ijms24032998. [PMID: 36769322 PMCID: PMC9918012 DOI: 10.3390/ijms24032998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is one of the most malignant cancer types and has a poor prognosis. It is often diagnosed at an advanced stage because of the absence of typical symptoms. Therefore, it is necessary to establish a screening method for the early detection of pancreatic cancer in high-risk individuals. This is a prospective validation study conducted in a cohort of 1033 Japanese individuals (male, n = 467, age = 63.3 ± 11.5 years; female, n = 566, age = 64.2 ± 10.6 years) to evaluate the use of salivary polyamines for screening pancreatic diseases and cancers. Patients with pancreatic cancer were not included; however, other pancreatic diseases were treated as positive cases for accuracy verification. Of the 135 individuals with elevated salivary polyamine markers, 66 had pancreatic diseases, such as chronic pancreatitis and pancreatic cysts, and 1 had gallbladder cancer. These results suggest that the salivary polyamine panel is a useful noninvasive pancreatic disease screening tool.
Collapse
|
6
|
Salivary Antioxidant Capacity and Magnesium in Generalized Anxiety Disorder. Metabolites 2023; 13:metabo13010073. [PMID: 36676998 PMCID: PMC9862115 DOI: 10.3390/metabo13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
Generalized anxiety disorder (GAD) is a prevalent disorder. The search for biomarkers may contribute to new knowledge about molecular pathogenesis and treatment. Since oxidative stress and micronutrient imbalance play a key role in the development of mental disorders, we aimed to study salivary antioxidant capacity and magnesium in patients with GAD in an anxiety model of solving problems with increasing complexity. The study subgroup consisted of 15 patients with GAD, and 17 healthy volunteers of the same age made up the control subgroup. Participants took a test with six levels of difficulty, which included false feedback. In this test, the participants were asked to remember the colors of balloons and react when the color changed. The reaction time, the number of correct answers, as well as biochemical parameters such as the antioxidant capacity of saliva and salivary magnesium, were assessed. There was no difference in the results of the quest between the subgroups; however, anxious participants spent more time at the moment of experimental frustration due to incorrect feedback and additional negative psycho-emotional load. Antioxidant capacity did not differ between the subgroups both before and after the experimental session. Average antioxidant capacity also did not change significantly at the endpoint of the experiment. However, the endpoint antioxidant capacity correlated negatively with the reaction time in anxious patients in the second block (where the false feedback as a frustrating factor appeared). Magnesium was initially significantly higher in the group of anxious participants and decreased at the experiment endpoint; in healthy patients, there were no changes in salivary magnesium at the endpoint. In conclusion, the compensatory potential of oxidative metabolism and magnesium in patients with GAD was spent with additional psycho-emotional stress, in contrast to healthy individuals, but it was sufficient to avoid exhaustion during experimental frustrating exposure.
Collapse
|
7
|
Sugimoto M, Aizawa Y, Tomita A. Data Processing and Analysis in Liquid Chromatography-Mass Spectrometry-Based Targeted Metabolomics. Methods Mol Biol 2023; 2571:241-255. [PMID: 36152165 DOI: 10.1007/978-1-0716-2699-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mass spectrometry (MS)-based metabolomics provides high-dimensional datasets; that is, the data include various metabolite features. Data analysis begins by converting the raw data obtained from the MS to produce a data matrix (metabolite × concentrations). This is followed by several steps, such as peak integration, alignment of multiple data, metabolite identification, and calculation of metabolite concentrations. Each step yields the analytical results and the accompanying information used for the quality assessment of the anterior steps. Thus, the measurement quality can be analyzed through data processing. Here, we introduce a typical data processing procedure and describe a method to utilize the intermediate data as quality control. Subsequently, commonly used data analysis methods for metabolomics data, such as statistical analyses, are also introduced.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
- Institute for Advanced Biosciences, Yamagata, Japan.
| | - Yumi Aizawa
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Atsumi Tomita
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Sugimoto M, Aizawa Y. Metabolomics Analysis of Blood, Urine, and Saliva Samples Based on Capillary Electrophoresis-Mass Spectrometry. Methods Mol Biol 2023; 2571:83-94. [PMID: 36152152 DOI: 10.1007/978-1-0716-2699-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Capillary electrophoresis-mass spectrometry (CE-MS) is an ideal method for analyzing various metabolites in biological samples. CE-MS can simultaneously identify and quantify hundreds of charged metabolites using only two acquisition methods for positively and negatively charged metabolites. Furthermore, CE-MS is commonly used for analyzing biological samples to understand the pathology of diseases at the metabolic level and biofluid samples, such as blood and urine, to explore biomarkers. Here, we introduce a protocol that delineates the handling of clinical samples to ensure that the CE-MS analysis yields reproducible quantified data. We have focused on sample collection, storage, processing, and measurement. Although the implementation of rigorous standard operating protocols is preferred for enhancing the quality of the samples, various limitations in an actual clinical setting make it difficult to adhere to strict rules. Therefore, the effect of each process on the quantified metabolites needs to be evaluated to design a protocol with acceptable tolerances. Furthermore, quality controls and assessments to handle clinical samples are introduced.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| | - Yumi Aizawa
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Salivary Biomarkers in Oral Squamous Cell Carcinoma: A Proteomic Overview. Proteomes 2022; 10:proteomes10040037. [PMID: 36412636 PMCID: PMC9680331 DOI: 10.3390/proteomes10040037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most frequent cancers worldwide. Endoscopic methods may be useful in the evaluation of oral injuries even though the diagnostic gold standard is a biopsy. Targeted screenings could be considered the best way to prevent the occurrence of oral cancer. Aimed to elucidate the potential identification of specific biomarkers of OSCC, the use of saliva is convenient and noninvasive. Many studies reported more than a hundred putative saliva biomarkers for OSCC, and proteogenomic approaches were fundamental to disclosing this issue. METHODS Relevant literature published in the last few years was systematically searched on PubMed and we focused on articles about the use and study of salivary biomarkers in the diagnostics of head and neck cancer (n = 110). Thereafter, we performed a selection focusing on diagnosis with salivary proteomics in OSCC (n = 8). RESULTS Saliva proteomics can be a source of biomarkers for OSCC. We reviewed literature of biomarker proteins in saliva that could also be evaluated as probable targets for non-invasive screening of oral neoplasm such as cytokines, matrix metalloproteinases, and acute-phase response proteins. CONCLUSIONS The measurement of salivary biomarkers is a highly hopeful technique for the diagnosis of OSCC. Proteogenomic approaches could permit an accurate and early diagnosis of OSCC. This review seeks to generate an up-to-date view on translational OSCC issues by raising awareness of researchers, physicians, and surgeons. Renewed clinical studies, which will validate the sensitivity and specificity of salivary biomarkers, are necessary to translate these results into possible strategies for early diagnosis of OSCC, thus improving patient outcomes.
Collapse
|
10
|
Koster HJ, Guillen-Perez A, Gomez-Diaz JS, Navas-Moreno M, Birkeland AC, Carney RP. Fused Raman spectroscopic analysis of blood and saliva delivers high accuracy for head and neck cancer diagnostics. Sci Rep 2022; 12:18464. [PMID: 36323705 PMCID: PMC9630497 DOI: 10.1038/s41598-022-22197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
As a rapid, label-free, non-destructive analytical measurement requiring little to no sample preparation, Raman spectroscopy shows great promise for liquid biopsy cancer detection and diagnosis. We carried out Raman analysis and mass spectrometry of plasma and saliva from more than 50 subjects in a cohort of head and neck cancer patients and benign controls (e.g., patients with benign oral masses). Unsupervised data models were built to assess diagnostic performance. Raman spectra collected from either biofluid provided moderate performance to discriminate cancer samples. However, by fusing together the Raman spectra of plasma and saliva for each patient, subsequent analytical models delivered an impressive sensitivity, specificity, and accuracy of 96.3%, 85.7%, and 91.7%, respectively. We further confirmed that the metabolites driving the differences in Raman spectra for our models are among the same ones that drive mass spectrometry models, unifying the two techniques and validating the underlying ability of Raman to assess metabolite composition. This study bolsters the relevance of Raman to provide additive value by probing the unique chemical compositions across biofluid sources. Ultimately, we show that a simple data augmentation routine of fusing plasma and saliva spectra provided significantly higher clinical value than either biofluid alone, pushing forward the potential of clinical translation of Raman spectroscopy for liquid biopsy cancer diagnostics.
Collapse
Affiliation(s)
- Hanna J. Koster
- grid.27860.3b0000 0004 1936 9684Biomedical Engineering, University of California, Davis, CA USA
| | - Antonio Guillen-Perez
- grid.27860.3b0000 0004 1936 9684Electrical and Computer Engineering, University of California, Davis, CA USA
| | - Juan Sebastian Gomez-Diaz
- grid.27860.3b0000 0004 1936 9684Electrical and Computer Engineering, University of California, Davis, CA USA
| | | | - Andrew C. Birkeland
- grid.27860.3b0000 0004 1936 9684Department of Otolaryngology, University of California, CA Davis, USA
| | - Randy P. Carney
- grid.27860.3b0000 0004 1936 9684Biomedical Engineering, University of California, Davis, CA USA
| |
Collapse
|
11
|
Chen X, Xian B, Wei J, Chen Y, Yang D, Lai X, Liu L, Wu Y, Lin X, Deng Y, Zhang H, Liu W, Qiao G, Li Z. Predictive value of the presence of Prevotella and the ratio of Porphyromonas gingivalis to Prevotella in saliva for esophageal squamous cell carcinoma. Front Cell Infect Microbiol 2022; 12:997333. [PMID: 36310858 PMCID: PMC9612942 DOI: 10.3389/fcimb.2022.997333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Imbalance of oral salivary microbiota has been linked to the pathogenesis of a variety of systemic diseases, and oral bacterial species have been shown to be useful biomarkers for systemic diseases.This study aimed to characterize the alterations of oral microbiota in patients with esophageal squamous cell carcinoma (ESCC) and to evaluate the diagnostic performance of oral microbial biomarkers for ESCC. Methods The relative abundance of flora in saliva samples was analyzed by 16S rDNA sequencing, and differences in the species present in samples from ESCC patients and healthy controls (HCs) were identified by analyzing species diversity and performing LEfSe analysis. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the diagnostic performance of the characteristic bacteria individually and in combination. Results Differences in bacterial diversity indexes were observed for the saliva of ESCC patients versus HCs (P<0.05), but principal coordinate analysis did not detect a significant difference in the composition of oral microbiota between ESCC patients and HCs (P>0.05). LEfSe analysis showed that Leptotrichia, Porphyromonas (Pg), Streptococcus, Rothia, Lactobacillus and Peptostreptococcus were more abundant in ESCC patient saliva than in HC saliva, whereas Haemophilus, Alloprevotella (All), Prevotella_7, Prevotella (Pre), Prevotella_6, Pasteurellaceae and Pasteurellales were significantly less abundant in ESCC patient saliva (P<0.05). From ROC curve analysis, Pg could detect ESCC with an area under the ROC curve (AUC) of 0.599, sensitivity of 62.2%, and specificity of 70%, whereas the ratio of Pg/Pre had an AUC of 0.791, sensitivity of 93.3%, and specificity of 62.3%. Moreover, the combination of the Pg/Pre and Pg/All ratios showed further improved diagnostic performance for ESCC (AUC=0.826) and even good sensitivity and specificity for the diagnosis of early ESCC (68.2% and 86%, respectively; AUC=0.786). Conclusion This study shows that Pg in saliva can be used as a characteristic marker of ESCC, and the ratios of Pg/Pre and Pg/All offered significantly improved diagnostic performance, especially for early ESCC.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of General Practice, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bohong Xian
- Department of General Practice, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junmin Wei
- Department of General Practice, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yixiang Chen
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongyang Yang
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medicine-Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaorong Lai
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medicine-Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lifang Liu
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yinghong Wu
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiayi Lin
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Deng
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huabin Zhang
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wanwei Liu
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guibin Qiao
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zijun Li, ; Guibin Qiao,
| | - Zijun Li
- Department of General Practice, Guangdong Provincial People's Hospital, Concord Medical Center, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zijun Li, ; Guibin Qiao,
| |
Collapse
|
12
|
Long-Term Mastication Changed Salivary Metabolomic Profiles. Metabolites 2022; 12:metabo12070660. [PMID: 35888784 PMCID: PMC9322701 DOI: 10.3390/metabo12070660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
Saliva is an ideal biofluid for monitoring oral and systemic health. Repeated mastication is a typical physical stimulus that improves salivary flow and oral hygiene. Recent metabolomic studies have shown the potential of salivary metabolomic components for various disease monitoring systems. Here, we evaluated the effect of long-term mastication on salivary metabolomic profiles. Young women with good oral hygiene (20.8 ± 0.3 years, n = 17) participated. They were prohibited from chewing gum during control periods (4 weeks each) and were instructed to chew a piece of gum base seven times a day for 10 min each time during the intervention period. Paired samples of unstimulated whole saliva collected on the last day of the control and intervention period were compared. Liquid chromatography−time-of-flight mass spectrometry successfully quantified 85 metabolites, of which 41 showed significant differences (p < 0.05, Wilcoxon paired test corrected by false discovery rate). Except for a few metabolites, such as citrate, most metabolites showed lower concentrations after the intervention. The pathways related to glycogenic amino acids, such as alanine, arginine, and glutamine, altered considerably. This study suggests that long-term mastication induces unstimulated salivary component-level changes.
Collapse
|
13
|
Koopaie M, Kolahdooz S, Fatahzadeh M, Manifar S. Salivary biomarkers in breast cancer diagnosis: A systematic review and diagnostic meta-analysis. Cancer Med 2022; 11:2644-2661. [PMID: 35315584 PMCID: PMC9249990 DOI: 10.1002/cam4.4640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/25/2021] [Accepted: 01/02/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Salivary diagnostics and their utility as a nonaggressive approach for breast cancer diagnosis have been extensively studied in recent years. This meta-analysis assesses the diagnostic value of salivary biomarkers in differentiating between patients with breast cancer and controls. METHODS We conducted a meta-analysis and systematic review of studies related to salivary diagnostics published in PubMed, EMBASE, Scopus, Ovid, Science Direct, Web of Science (WOS), and Google Scholar. The articles were chosen utilizing inclusion and exclusion criteria, as well as assessing their quality. Specificity and sensitivity, along with negative and positive likelihood ratios (NLR and PLR) and diagnostic odds ratio (DOR), were calculated based on random- or fixed-effects model. Area under the curve (AUC) and summary receiver-operating characteristic (SROC) were plotted and evaluated, and Fagan's Nomogram was evaluated for clinical utility. RESULTS Our systematic review and meta-analysis included 14 papers containing 121 study units with 8639 adult subjects (4149 breast cancer patients and 4490 controls without cancer). The pooled specificity and sensitivity were 0.727 (95% CI: 0.713-0.740) and 0.717 (95% CI: 0.703-0.730), respectively. The pooled NLR and PLR were 0.396 (95% CI: 0.364-0.432) and 2.597 (95% CI: 2.389-2.824), respectively. The pooled DOR was 7.837 (95% CI: 6.624-9.277), with the AUC equal to 0.801. The Fagan's nomogram showed post-test probabilities of 28% and 72% for negative and positive outcomes, respectively. We also conducted subgroup analyses to determine specificity, sensitivity, DOR, PLR, and NLR based on the mean age of patients (≤52 or >52 years old), saliva type (stimulated and unstimulated saliva), biomarker measurement method (mass spectrometry [MS] and non-MS measurement methods), sample size (≤55 or >55), biomarker type (proteomics, metabolomics, transcriptomics and proteomics, and reagent-free biophotonic), and nations. CONCLUSION Saliva, as a noninvasive biomarker, has the potential to accurately differentiate breast cancer patients from healthy controls.
Collapse
Affiliation(s)
| | | | - Mahnaz Fatahzadeh
- Department of Diagnostic SciencesRutgers School of Dental MedicineNewarkNew JerseyUSA
| | - Soheila Manifar
- Tehran University of Medical SciencesTehranIran
- Cancer Research Center, Cancer Institute of IranTehranIran
| |
Collapse
|
14
|
Kuwabara H, Katsumata K, Iwabuchi A, Udo R, Tago T, Kasahara K, Mazaki J, Enomoto M, Ishizaki T, Soya R, Kaneko M, Ota S, Enomoto A, Soga T, Tomita M, Sunamura M, Tsuchida A, Sugimoto M, Nagakawa Y. Salivary metabolomics with machine learning for colorectal cancer detection. Cancer Sci 2022; 113:3234-3243. [PMID: 35754317 PMCID: PMC9459332 DOI: 10.1111/cas.15472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
As the worldwide prevalence of colorectal cancer (CRC) increases, it is vital to reduce its morbidity and mortality through early detection. Saliva‐based tests are an ideal noninvasive tool for CRC detection. Here, we explored and validated salivary biomarkers to distinguish patients with CRC from those with adenoma (AD) and healthy controls (HC). Saliva samples were collected from patients with CRC, AD, and HC. Untargeted salivary hydrophilic metabolite profiling was conducted using capillary electrophoresis–mass spectrometry and liquid chromatography–mass spectrometry. An alternative decision tree (ADTree)‐based machine learning (ML) method was used to assess the discrimination abilities of the quantified metabolites. A total of 2602 unstimulated saliva samples were collected from subjects with CRC (n = 235), AD (n = 50), and HC (n = 2317). Data were randomly divided into training (n = 1301) and validation datasets (n = 1301). The clustering analysis showed a clear consistency of aberrant metabolites between the two groups. The ADTree model was optimized through cross‐validation (CV) using the training dataset, and the developed model was validated using the validation dataset. The model discriminating CRC + AD from HC showed area under the receiver‐operating characteristic curves (AUC) of 0.860 (95% confidence interval [CI]: 0.828‐0.891) for CV and 0.870 (95% CI: 0.837‐0.903) for the validation dataset. The other model discriminating CRC from AD + HC showed an AUC of 0.879 (95% CI: 0.851‐0.907) and 0.870 (95% CI: 0.838‐0.902), respectively. Salivary metabolomics combined with ML demonstrated high accuracy and versatility in detecting CRC.
Collapse
Affiliation(s)
- Hiroshi Kuwabara
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kenji Katsumata
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Atsuhiro Iwabuchi
- Center for Health Surveillance and Preventive Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Ryutaro Udo
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Tomoya Tago
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kenta Kasahara
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Junichi Mazaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masanobu Enomoto
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Tetsuo Ishizaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ryoko Soya
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Miku Kaneko
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Sana Ota
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Ayame Enomoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Makoto Sunamura
- Digestive Surgery and Transplantation Surgery, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Research and Development Center for Minimally Invasive Therapies Health Promotion and Preemptive Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
15
|
da Costa NL, de Sá Alves M, de Sá Rodrigues N, Bandeira CM, Oliveira Alves MG, Mendes MA, Cesar Alves LA, Almeida JD, Barbosa R. Finding the combination of multiple biomarkers to diagnose oral squamous cell carcinoma - A data mining approach. Comput Biol Med 2022; 143:105296. [PMID: 35149458 DOI: 10.1016/j.compbiomed.2022.105296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022]
Abstract
Data mining has proven to be a reliable method to analyze and discover useful knowledge about various diseases, including cancer research. In particular, data mining and machine learning algorithms to study oral squamous cell carcinoma (OSCC), the most common form of oral cancer, is a new area of research. This malignant neoplasm can be studied using saliva samples. Saliva is an important biofluid that must be used to verify potential biomarkers associated with oral cancer. In this study, first, we provide an overview of OSSC diagnoses based on machine learning and salivary metabolites. To our knowledge, this is the first study to apply advanced data mining techniques to diagnose OSCC. Then, we give new results of classification and feature selection algorithms used to identify potential salivary biomarkers of OSCC. To accomplish this task, we used the filter feature selection random forest importance algorithm and a wrapper methodology to evaluate the importance of metabolites obtained from gas chromatography mass-spectrometry (GC-MS) in the context of differentiation of OSCC and the control group. Salivary samples (n = 68) were collected for the control group, and the OSCC group were from patients matched for gender, age, and smoking habit. The classification process occurred based on Random Forest (RF) classification algorithm along with 10-cross validation. The results showed that glucuronic acid, maleic acid, and batyl alcohol can classify the samples with an area under the curve (AUC) of 0.91 versus an AUC of 0.76 using all 51 metabolites analyzed. The methodology used in this study can assist healthcare professionals and be adopted to discover diagnostic biomarkers for other diseases.
Collapse
Affiliation(s)
- Nattane Luíza da Costa
- Informatics Nucleo, Goiano Federal Institute of Education, Science and Technology, Campus Urutaí, Urutaí-GO, Brazil.
| | - Mariana de Sá Alves
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Nayara de Sá Rodrigues
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Celso Muller Bandeira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Mônica Ghislaine Oliveira Alves
- Technology Reaearch Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruzes, Brazil; School of Medicine, Anhembi Morumbi University, São José dos Campos, Brazil.
| | | | - Levy Anderson Cesar Alves
- School of Dentistry, Universidade Paulista, São Paulo, Brazil; School of Dentistry, Universidade Municipal de São Caetano do Sul, São Caetano do Sul, Brazil.
| | - Janete Dias Almeida
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, Brazil.
| | - Rommel Barbosa
- Instituto de Informática, Universidade Federal de Goiás, Goiânia-GO, Brazil.
| |
Collapse
|
16
|
Ishikawa S, Sugimoto M, Konta T, Kitabatake K, Ueda S, Edamatsu K, Okuyama N, Yusa K, Iino M. Salivary Metabolomics for Prognosis of Oral Squamous Cell Carcinoma. Front Oncol 2022; 11:789248. [PMID: 35070995 PMCID: PMC8769065 DOI: 10.3389/fonc.2021.789248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
This study aimed to identify salivary metabolomic biomarkers for predicting the prognosis of oral squamous cell carcinoma (OSCC) based on comprehensive metabolomic analyses. Quantified metabolomics data of unstimulated saliva samples collected from patients with OSCC (n = 72) were randomly divided into the training (n = 35) and validation groups (n = 37). The training data were used to develop a Cox proportional hazards regression model for identifying significant metabolites as prognostic factors for overall survival (OS) and disease-free survival. Moreover, the validation group was used to develop another Cox proportional hazards regression model using the previously identified metabolites. There were no significant between-group differences in the participants’ characteristics, including age, sex, and the median follow-up periods (55 months [range: 3–100] vs. 43 months [range: 0–97]). The concentrations of 5-hydroxylysine (p = 0.009) and 3-methylhistidine (p = 0.012) were identified as significant prognostic factors for OS in the training group. Among them, the concentration of 3-methylhistidine was a significant prognostic factor for OS in the validation group (p = 0.048). Our findings revealed that salivary 3-methylhistidine is a prognostic factor for OS in patients with OSCC.
Collapse
Affiliation(s)
- Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Iida-nishi, Japan
| | - Masahiro Sugimoto
- Health Promotion and Pre-emptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Shinjuku, Japan
| | - Tsuneo Konta
- Department of Public Health and Hygiene, Yamagata University Graduate School of Medicine, Iida-nishi, Japan
| | - Kenichiro Kitabatake
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Iida-nishi, Japan
| | - Shohei Ueda
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Iida-nishi, Japan
| | - Kaoru Edamatsu
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Iida-nishi, Japan
| | - Naoki Okuyama
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Iida-nishi, Japan
| | - Kazuyuki Yusa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Iida-nishi, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Iida-nishi, Japan
| |
Collapse
|
17
|
Trevisan França de Lima L, Müller Bark J, Rasheduzzaman M, Ekanayake Weeramange C, Punyadeera C. Saliva as a matrix for measurement of cancer biomarkers. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Koopaie M, Abedinejad F, Manifar S, Mousavi R, Kolahdooz S, Shamshiri A. Salivary miRNA-21 expression as a potential non-invasive diagnostic biomarker in breast cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Time-Course of Salivary Metabolomic Profiles during Radiation Therapy for Head and Neck Cancer. J Clin Med 2021; 10:jcm10122631. [PMID: 34203786 PMCID: PMC8232617 DOI: 10.3390/jcm10122631] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Oral mucositis (OM) is one of the most frequently observed adverse oral events in radiation therapy for patients with head and neck cancer. Thus, objective evaluation of OM severity is needed for early and timely intervention. Here, we analyzed the time-course of salivary metabolomic profiles during the radiation therapy. The severity of OM (National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events v3.0) of nine patients with head and neck cancer was evaluated. Partial least squares regression-discriminant analysis, using samples collected before radiation therapy, showed that histidine and tyrosine highly discriminated high-grade OM from low-grade OM before the start of radiation therapy (significant difference, p = 0.048 for both metabolites). Further, the pretreatment concentrations of gamma-aminobutyric acid and 2-aminobutyric acids were higher in the high-grade OM group. Although further validations are still necessary, this study showed potentially associated metabolites with worse radiotherapy-related OM among patients with head and neck cancer.
Collapse
|
20
|
Cognitive Dysfunction in a Mouse Model of Cerebral Ischemia Influences Salivary Metabolomics. J Clin Med 2021; 10:jcm10081698. [PMID: 33920851 PMCID: PMC8071145 DOI: 10.3390/jcm10081698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Vascular dementia, caused by cerebrovascular disease, is associated with cognitive impairment and reduced hippocampal metabolite levels. Specifically, cognitive impairment can be induced by decreased hippocampal brain-derived neurotrophic factor (BDNF) expression. The development of low or non-invasive biomarkers to characterize these diseases is an urgent task. Disturbance of metabolic pathways has been frequently observed in cognitive impairment, and salivary molecules also showed the potentials to reflect cognitive impairment. Therefore, we evaluated salivary metabolic profiles associated with altered hippocampal BDNF expression levels in a cerebral ischemia mouse model using metabolomic analyses. The effect of tacrine (a cholinesterase inhibitor) administration was also examined. The arteries of ICR mice were occluded with aneurysm clips to generate the cerebral ischemia model. Learning and memory performance was assessed using the elevated plus maze (EPM) test. Hippocampal and blood BDNF levels were quantified using an enzyme-linked immunosorbent assay. Glutamate decarboxylase 1 (GAD1) mRNA expression, is associated with cognitive impairment, was quantified by a real-time polymerase chain reaction. The EPM test revealed impaired spatial working memory in the cerebral ischemia mouse model; tacrine administration ameliorated this memory impairment. Cerebral ischemia suppressed GAD1 expression by decreasing hippocampal BDNF expression. In total, seven salivary metabolites, such as trimethylamine N-oxide and putrescine, were changed by cognitive impairment and tacrine administration. Our data suggest that salivary metabolite patterns were associated with cognitive function.
Collapse
|
21
|
Kawanishi N, Hoshi N, Adachi T, Ichigaya N, Kimoto K. Positive Effects of Saliva on Oral Candidiasis: Basic Research on the Analysis of Salivary Properties. J Clin Med 2021; 10:812. [PMID: 33671369 PMCID: PMC7922919 DOI: 10.3390/jcm10040812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The major causes of oral candidiasis include decreased salivary flow rate and the use of ill-fitting dentures. However, the relationships among prosthetic treatment, saliva, and Candida albicans have not been elucidated. This study aimed to examine the effects of prosthetic treatment and changes in saliva (mainly the salivary flow rate) on oral candidiasis symptoms. Participants requiring prosthetic treatment underwent testing for C. albicans, salivary flow rate, intraoral symptoms, and bite force at the initial visit and four months after treatment to evaluate pretreatment and post-treatment changes. The relationships among C. albicans, salivary flow rate, dentures, and intraoral symptoms were analyzed using multiple regression analysis. Denture treatment improved activity against C. albicans as well as the salivary flow rate, intraoral symptoms, and masticatory function. Multiple regression analysis revealed that changes in the stimulated salivary flow rate due to prosthetic treatment significantly improved C. albicans detection (p = 0.011), intraoral symptoms (p = 0.037), and bite force (p = 0.031). This study showed that prosthetic treatment improved salivary flow and intraoral symptoms and confirmed the influence of stimulated salivary flow rate changes.
Collapse
Affiliation(s)
| | - Noriyuki Hoshi
- Department of Oral Interdisciplinary Medicine, Prosthodontics & Oral Implantology, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan; (N.K.); (T.A.); (N.I.); (K.K.)
| | | | | | | |
Collapse
|
22
|
Relationship between Standard Uptake Values of Positron Emission Tomography/Computed Tomography and Salivary Metabolites in Oral Cancer: A Pilot Study. J Clin Med 2020; 9:jcm9123958. [PMID: 33297326 PMCID: PMC7762245 DOI: 10.3390/jcm9123958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) is usually used for staging or evaluation of treatment response rather than for cancer screening. However, 18F-FDG PET/CT has also been used in Japan for cancer screening in people with no cancer symptoms, and accumulating evidence supports this application of 18F-FDG PET/CT. Previously, we have observed a correlation between the saliva and tumor metabolomic profiles in patients with oral cancer. Hence, if salivary metabolites demonstrate a significant correlation with PET parameters such as the maximum standardized uptake value (SUVmax), they may have the potential to be used as a screening tool before PET/CT to identify patients with high SUVmax. Hence, in this study, we aimed to explore the relationship between salivary metabolites and SUVmax of 18F-FDG PET/CT using previously collected data. 18F-FDG PET/CT was performed for staging 26 patients with oral cancer. The collected data were integrated and analyzed along with quantified salivary hydrophilic metabolites obtained from the same patients with oral cancer and controls (n = 44). In total, 11 metabolites showed significant correlations with SUVmax in the delayed phases. A multiple logistic regression model of the two metabolites showed the ability to discriminate between patients with oral cancer and controls, with an area under the receiver operating characteristic curve of 0.738 (p = 0.001). This study uniquely confirmed a relationship between salivary metabolites and SUVmax of PET/CT in patients with oral cancer; salivary metabolites were significantly correlated with SUVmax. These salivary metabolites can be used as a screening tool before PET/CT to identify patients with high SUVmax, i.e., to detect the presence of oral cancer.
Collapse
|