1
|
Mertes IB. Associations between the medial olivocochlear reflex, middle-ear muscle reflex, and sentence-in-noise recognition using steady and pulsed noise elicitors. Hear Res 2024; 453:109108. [PMID: 39244840 DOI: 10.1016/j.heares.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
The middle-ear muscle reflex (MEMR) and medial olivocochlear reflex (MOCR) modify peripheral auditory function, which may reduce masking and improve speech-in-noise (SIN) recognition. Previous work and our pilot data suggest that the two reflexes respond differently to static versus dynamic noise elicitors. However, little is known about how the two reflexes work in tandem to contribute to SIN recognition. We hypothesized that SIN recognition would be significantly correlated with the strength of the MEMR and with the strength of the MOCR. Additionally, we hypothesized that SIN recognition would be best when both reflexes were activated. A total of 43 healthy, normal-hearing adults met the inclusion/exclusion criteria (35 females, age range: 19-29 years). MEMR strength was assessed using wideband absorbance. MOCR strength was assessed using transient-evoked otoacoustic emissions. SIN recognition was assessed using a modified version of the QuickSIN. All measurements were made with and without two types of contralateral noise elicitors (steady and pulsed) at two levels (50 and 65 dB SPL). Steady noise was used to primarily elicit the MOCR and pulsed noise was used to elicit both reflexes. Two baseline conditions without a contralateral elicitor were also obtained. Results revealed differences in how the MEMR and MOCR responded to elicitor type and level. Contrary to hypotheses, SIN recognition was not significantly improved in the presence of any contralateral elicitors relative to the baseline conditions. Additionally, there were no significant correlations between MEMR strength and SIN recognition, or between MOCR strength and SIN recognition. MEMR and MOCR strength were significantly correlated for pulsed noise elicitors but not steady noise elicitors. Results suggest no association between SIN recognition and the MEMR or MOCR, at least as measured and analyzed in this study. SIN recognition may have been influenced by factors not accounted for in this study, such as contextual cues, warranting further study.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, 901 South Sixth Street, University of Illinois Urbana-Champaign, Champaign 61820 IL, USA.
| |
Collapse
|
2
|
Lapsley Miller JA, Reed CM, Marshall L, Perez ZD, Villabona T. A Clinically Viable Medial Olivocochlear Reflex Assay Using Transient-Evoked Otoacoustic Emissions. Ear Hear 2024; 45:115-129. [PMID: 37475147 DOI: 10.1097/aud.0000000000001406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
OBJECTIVES The contralateral medial olivocochlear reflex (MOCR) strength may indicate various auditory conditions in humans, but a clinically viable assay and equipment are needed for quick, accurate, and reliable measurements. The first experiment compared an earlier version of the assay, which used a nonlinear-mode chirp stimulus, with a new assay using a linear-mode click stimulus, designed to give reliable MOCR measurements in most normal-hearing ears. The second experiment extended the improved assay on a purpose-built binaural hardware platform that used forward-pressure level (FPL) calibration for both the stimulus and the contralateral MOCR elicitor. DESIGN Transient-evoked otoacoustic emission (TEOAE) tests were measured with and without a 60-dB SPL MOCR-evoking contralateral broadband noise. The normalized MOCR strength (MOCR%) was derived from the TEOAE responses for each trial pair using the complex pressure difference weighted by the TEOAE magnitude. Experiment 1 compared MOCR% within-subject and across-day using two TEOAE stimuli: nonlinear-mode chirps (50 dB SPL, bandpass 1-5 kHz, 14 ms window delayed by 2 ms) and linear-mode clicks (50 dB SPL, bandpass 0.5-2.5 kHz, 13 ms window delayed by 5 ms). TEOAE responses were analyzed in the 0.5 to 2.5 kHz band. Thirty adult participants with normal hearing (30 ears) completed the study. The TEOAE stimulus was calibrated in situ using spectral flattening, and the contralateral noise was calibrated in a coupler. Twelve TEOAE trial pairs were collected for each participant and condition. Experiment 2 used a purpose-built binaural system. The TEOAE stimuli were linear-mode clicks (50 dB SPL, bandpass 1-3 kHz, 13 ms window delayed by 5 ms), analyzed in the 1 to 3 kHz band over ~12 trial pairs. After a probe refit, an additional trial pair was collected for the two early-stopping signal-to-noise ratio criteria (15 and 20 dB). They were evaluated for single-trial reliability and test time. Nineteen adult participants with normal hearing (38 ears) completed the study. The TEOAE clicks and contralateral elicitor noise were calibrated in situ using FPL and delivered with automated timing. RESULTS MOCR% for linear-mode clicks was distinguishable from measurement variability in 98% to 100% of participants' ears (both experiments), compared with only 73% for the nonlinear-mode chirp (experiment 1). MOCR detectability was assessed using the MOCR% across-subject/within-subject variance ratio. The ratio in experiment 1 for linear-mode clicks was higher (8.0) than for nonlinear-mode chirps (6.4). The ratio for linear-mode clicks (8.9) in experiment 2 was slightly higher than for the comparable linear-mode stimulus (8.0) in experiment 1. TEOAEs showed excellent reliability with high signal-to-noise ratios in both experiments, but reliability was higher for linear-mode clicks than nonlinear-mode chirps. MOCR reliability for the two stimuli was comparable. The FPL pressure response retest reliability derived from the SPL at the microphone was higher than the SPL retest reliability across 0.4 to 8 kHz. Stable results required 2 to 3 trial pairs for the linear-mode click (experiments 1 and 2) and three for the nonlinear-mode chirp (experiment 1), taking around 2 min on average. CONCLUSIONS The linear-mode click assay produced measurable, reliable, and stable TEOAE and MOCR results on both hardware platforms in around 2 min per ear. The stimulus design and response window ensured that any stimulus artifact in linear mode was unlikely to confound the results. The refined assay is ready to produce high-quality data quickly for clinical and field studies to develop population norms, recognize diagnostic patterns, and determine risk profiles.
Collapse
Affiliation(s)
- Judi A Lapsley Miller
- Mimosa Acoustics, Champaign, Illinois, USA
- Naval Submarine Medical Research Laboratory, Groton, Connecticut, USA
| | - Charlotte M Reed
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lynne Marshall
- Naval Submarine Medical Research Laboratory, Groton, Connecticut, USA
| | - Zachary D Perez
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Timothy Villabona
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Lewis JD, Goettl-Meyer M, Lee D. Medial Olivocochlear Reflex Strength in Ears With Low-to-Moderate Annual Noise Exposure. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1428-1443. [PMID: 36940474 DOI: 10.1044/2022_jslhr-22-00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE Studies in lower mammals demonstrate enhancement of the medial olivocochlear reflex (MOCR) following noise exposure. A similar effect may occur in humans, and there is some evidence of an individual's acoustic history affecting the MOCR. The current work evaluates the relationship between an individual's annual noise exposure history and their MOCR strength. Given the potential role of the MOCR as a biological hearing protector, it is important to identify factors associated with MOCR strength. METHOD Data were collected from 98 normal-hearing young adults. Annual noise exposure history was estimated using the Noise Exposure Questionnaire. MOCR strength was assayed using click-evoked otoacoustic emissions (CEOAEs) measured with and without noise presented to the contralateral ear. MOCR metrics included the MOCR-induced otoacoustic emission (OAE) magnitude shift and phase shift. A CEOAE signal-to-noise ratio (SNR) of at least 12 dB was required for estimation of the MOCR metrics. Linear regression was applied to evaluate the relationship between MOCR metrics and annual noise exposure. RESULTS Annual noise exposure was not a statistically significant predictor of the MOCR-induced CEOAE magnitude shift. However, annual noise exposure was a statistically significant predictor of the MOCR-induced CEOAE phase shift-the MOCR-induced phase shift decreased with increasing noise exposure. Additionally, annual noise exposure was a statistically significant predictor of OAE level. CONCLUSIONS Findings contrast with recent work that suggests MOCR strength increases with annual noise exposure. Compared with previous work, data for this study were collected using more stringent SNR criteria, which is expected to increase the precision of the MOCR metrics. Additionally, data were collected for a larger subject population with a wider range of noise exposures. Whether findings generalize to other exposure durations and levels is unknown and requires future study.
Collapse
Affiliation(s)
- James D Lewis
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Morgaine Goettl-Meyer
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora
| | - Donguk Lee
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| |
Collapse
|
4
|
Mertes IB, Stutz AL. Lack of correlation between medial olivocochlear reflex strength and sentence recognition in noise. Int J Audiol 2023; 62:110-117. [PMID: 35195043 DOI: 10.1080/14992027.2022.2033857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The medial olivocochlear (MOC) reflex provides unmasking of sounds in noise, but its contribution to speech-in-noise perception remains unclear due to conflicting results. This study determined associations between MOC reflex strength and sentence recognition in noise in individuals with normal hearing. DESIGN MOC reflex strength was assessed using contralateral inhibition of transient-evoked otoacoustic emissions (TEOAEs). Scores on the AzBio sentence task were quantified at three signal-to-noise ratios (SNRs). Additionally, slope and threshold of the psychometric function were computed. Associations between MOC reflex strength and speech-in-noise outcomes were assessed using Spearman rank correlations. STUDY SAMPLE Nineteen young adults with normal hearing participated, with data from 17 individuals (mean age = 21.8 years) included in the analysis. RESULTS Contralateral noise significantly decreased the amplitude of TEOAEs. A range of contralateral inhibition values was exhibited across participants. Scores increased significantly with increasing SNR. Contrary to hypotheses, there were no significant correlations between MOC reflex strength and score, nor were there any significant correlations between MOC reflex strength and measures of the psychometric function. CONCLUSIONS Results found no significant monotonic relationship between MOC reflex strength and sentence recognition in noise. Future work is needed to determine the functional role of the MOC reflex.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Abigail L Stutz
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
5
|
Jedrzejczak WW, Milner R, Pilka E, Ganc M, Skarzynski H. Visual attention does not affect the reliability of otoacoustic emission or medial olivocochlear reflex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2398. [PMID: 36319231 DOI: 10.1121/10.0014900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigated whether visual attention affects the reliability (i.e., repeatability) of transiently evoked otoacoustic emission (TEOAE) magnitudes or of medial olivocochlear reflex (MOCR) estimates. TEOAEs were measured during three visual attentional conditions: control (subject were seated with eyes closed); passive (subjects looked at a pattern of squares on a computer screen); and active (subjects silently counted an occasionally inverted pattern). To estimate reliability, the whole recording session was repeated the next day. The results showed that visual attention does not significantly affect TEOAE or MOCR magnitudes-or their reliability. It is therefore possible to employ visual stimuli (e.g., watching a silent movie) during TEOAE experiments, a procedure sometimes used during testing to prevent subjects from falling asleep or to keep children still and quiet.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Rafal Milner
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Edyta Pilka
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Malgorzata Ganc
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Henryk Skarzynski
- World Hearing Center, Institute of Physiology and Pathology of Hearing, ulica Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| |
Collapse
|
6
|
Jedrzejczak WW, Kochanek K, Pilka E, Pastucha M, Skarzynski H. Medial olivocochlear reflex reliability: The effects of averaging and presence of synchronized spontaneous otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2150. [PMID: 36319248 DOI: 10.1121/10.0014601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The medial olivocochlear reflex (MOCR), usually assessed by the inhibition of transiently evoked otoacoustic emissions (TEOAEs) with contralateral noise, is a very small effect. In understanding the origin of the MOCR, it is crucial to obtain data of the highest accuracy, i.e., with a high signal-to-noise ratio (SNR), which in turn largely depends on the number of signal averages. This study investigates how the reliability of MOCR measures is affected by the number of averages. At the same time, the effect of the presence of synchronized spontaneous otoacoustic emissions (SSOAEs) is taken into account, as it is known that this factor significantly affects TEOAE amplitudes and SNRs. Each recording session consisted of two series of four measurements, allowing comparison of MOCR magnitude based on 250, 500, 750, and 1000 averages. Reliability was based on comparing the two series. The results show that, for a good quality MOCR measure (i.e., intraclass correlation above 0.9), the required number of averages is at least double that obtainable from a standard TEOAE test (i.e., 500 compared to 250). Ears without SSOAEs needed a higher number of averages to reach a correlation of 0.9 than ears with SSOAEs.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, World Hearing Center, ul. Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Krzysztof Kochanek
- Institute of Physiology and Pathology of Hearing, World Hearing Center, ul. Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Edyta Pilka
- Institute of Physiology and Pathology of Hearing, World Hearing Center, ul. Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Małgorzata Pastucha
- Institute of Physiology and Pathology of Hearing, World Hearing Center, ul. Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, World Hearing Center, ul. Mokra 17, Kajetany 05-830 Nadarzyn, Poland
| |
Collapse
|
7
|
Mertes IB, Potocki ME. Contralateral noise effects on otoacoustic emissions and electrophysiologic responses in normal-hearing adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2255. [PMID: 35364945 DOI: 10.1121/10.0009910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Contralateral noise inhibits the amplitudes of cochlear and neural responses. These measures may hold potential diagnostic utility. The medial olivocochlear (MOC) reflex underlies the inhibition of cochlear responses but the extent to which it contributes to inhibition of neural responses remains unclear. Mertes and Leek [J. Acoust. Soc. Am. 140, 2027-2038 (2016)] recently examined contralateral inhibition of cochlear responses [transient-evoked otoacoustic emissions (TEOAEs)] and neural responses [auditory steady-state responses (ASSRs)] in humans and found that the two measures were not correlated, but potential confounds of older age and hearing loss were present. The current study controlled for these confounds by examining a group of young, normal-hearing adults. Additionally, measurements of the auditory brainstem response (ABR) were obtained. Responses were elicited using clicks with and without contralateral broadband noise. Changes in TEOAE and ASSR magnitude as well as ABR wave V latency were examined. Results indicated that contralateral inhibition of ASSRs was significantly larger than that of TEOAEs and that the two measures were uncorrelated. Additionally, there was no significant change in wave V latency. Results suggest that further work is needed to understand the mechanism underlying contralateral inhibition of the ASSR.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| | - Morgan E Potocki
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, Illinois 61820, USA
| |
Collapse
|
8
|
The Reliability of Contralateral Suppression of Otoacoustic Emissions Is Greater in Women than in Men. Audiol Res 2022; 12:79-86. [PMID: 35200258 PMCID: PMC8869615 DOI: 10.3390/audiolres12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this study was to compare the reliability of the medial olivocochlear reflex (MOCR) between men and women. The strength of the MOCR was measured in terms of the suppression of transiently evoked otoacoustic emissions (TEOAEs) by contralateral acoustic stimulation (CAS). The difference between TEOAEs with and without CAS (white noise) was calculated as raw decibel TEOAE suppression as well as normalized TEOAE suppression expressed in percent. In each subject, sets of measurements were performed twice. Reliability was evaluated by calculating the intraclass correlation coefficient, the standard error of measurement, and the minimum detectable change (MDC). The study included 40 normally hearing subjects (20 men; 20 women). The estimates of MOCR for both genders were similar. Nevertheless, the reliability of the MOCR was poorer in men, with an MDC around twice that of women. This can be only partially attributed to slightly lower signal-to-noise ratios (SNRs) in men, since we used strict procedures calling for high SNRs (around 20 dB on average). Furthermore, even when we compared subgroups with similar SNRs, there was still lower MOCR reliability in men.
Collapse
|
9
|
Boothalingam S, Goodman SS, MacCrae H, Dhar S. A Time-Course-Based Estimation of the Human Medial Olivocochlear Reflex Function Using Clicks. Front Neurosci 2021; 15:746821. [PMID: 34776849 PMCID: PMC8581223 DOI: 10.3389/fnins.2021.746821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
The auditory efferent system, especially the medial olivocochlear reflex (MOCR), is implicated in both typical auditory processing and in auditory disorders in animal models. Despite the significant strides in both basic and translational research on the MOCR, its clinical applicability remains under-utilized in humans due to the lack of a recommended clinical method. Conventional tests employ broadband noise in one ear while monitoring change in otoacoustic emissions (OAEs) in the other ear to index efferent activity. These methods, (1) can only assay the contralateral MOCR pathway and (2) are unable to extract the kinetics of the reflexes. We have developed a method that re-purposes the same OAE-evoking click-train to also concurrently elicit bilateral MOCR activity. Data from click-train presentations at 80 dB peSPL at 62.5 Hz in 13 young normal-hearing adults demonstrate the feasibility of our method. Mean MOCR magnitude (1.7 dB) and activation time-constant (0.2 s) are consistent with prior MOCR reports. The data also suggest several advantages of this method including, (1) the ability to monitor MEMR, (2) obtain both magnitude and kinetics (time constants) of the MOCR, (3) visual and statistical confirmation of MOCR activation.
Collapse
Affiliation(s)
- Sriram Boothalingam
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - Hilary MacCrae
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States.,Knowles Center, Northwestern University, Evanston, IL, United States
| |
Collapse
|
10
|
Jedrzejczak WW, Pilka E, Kochanek K, Skarzynski H. Does the Presence of Spontaneous Components Affect the Reliability of Contralateral Suppression of Evoked Otoacoustic Emissions? Ear Hear 2021; 42:990-1005. [PMID: 33480622 DOI: 10.1097/aud.0000000000000996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The function of the medial olivocochlear system can be evaluated by measuring the suppression of otoacoustic emissions (OAEs) by contralateral stimulation. One of the obstacles preventing the clinical use of the OAE suppression is that it has considerable variability across subjects. One feature that tends to differentiate subjects is the presence or absence of spontaneous OAEs (SOAEs). The purpose of the present study was to investigate the reliability of contralateral suppression of transiently evoked OAEs (TEOAEs) measured using a commercial device in ears with and without SOAEs. DESIGN OAEs were recorded in a group of 60 women with normal hearing. TEOAEs were recorded with a linear protocol (identical stimuli), a constant stimulus level of 65 dB peSPL, and contralateral broadband noise (60 dB SPL) as a suppressor. Each recording session consisted of three measurements: the first two were made consecutively without taking out the probe (the "no refit" condition); the third measurement was made after taking out and refitting the probe (a "refit" condition). Global (for the whole signal) and half-octave band values of TEOAE response levels, signal-to-noise ratios (SNRs), raw dB TEOAE suppression, and normalized TEOAE suppression, and latency were investigated. Each subject was tested for the presence of SOAEs using the synchronized SOAE (SSOAE) technique. Reliability was evaluated by calculating the intraclass correlation coefficient, standard error of measurement (SEM) and minimum detectable change. RESULTS The TEOAE suppression was higher in ears with SSOAEs in terms of normalized percentages. However, when calculated in terms of decibels, the effect was not significant. The reliability of the TEOAE suppression as assessed by SEM was similar for ears with and without SSOAEs. The SEM for the whole dataset (with and without SSOAEs) was 0.08 dB for the no-refit condition and 0.13 dB for the refit condition (equivalent to 1.6% and 2.2%, respectively). SEMs were higher for half-octave bands than for global values. TEOAE SNRs were higher in ears with SSOAEs. CONCLUSIONS The effect of SSOAEs on reliability of the TEOAE suppression remains complicated. On the one hand, we found that higher SNRs generally provide lower variability of calculated suppressions, and that the presence of SSOAEs favors high SNRs. On the other hand, reliability estimates were not much different between ears with and without SSOAEs. Therefore, in a clinical setting, the presence of SOAEs does not seem to have an effect on suppression measures, at least when testing involves measuring global or half-octave band response levels.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| | - Edyta Pilka
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| | - Krzysztof Kochanek
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Nadarzyn, Poland
| |
Collapse
|
11
|
Bell A, Jedrzejczak WW. Muscles in and around the ear as the source of "physiological noise" during auditory selective attention: A review and novel synthesis. Eur J Neurosci 2021; 53:2726-2739. [PMID: 33484588 DOI: 10.1111/ejn.15122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/17/2021] [Indexed: 12/01/2022]
Abstract
The sensitivity of the auditory system is regulated via two major efferent pathways: the medial olivocochlear system that connects to the outer hair cells, and by the middle ear muscles-the tensor tympani and stapedius. The role of the former system in suppressing otoacoustic emissions has been extensively studied, but that of the complementary network has not. In studies of selective attention, decreases in otoacoustic emissions from contralateral stimulation have been ascribed to the medial olivocochlear system, but the acknowledged problem is that the results can be confounded by parallel muscle activity. Here, the potential role of the muscle system is examined through a wide but not exhaustive review of the selective attention literature, and the unifying hypothesis is made that the prominent "physiological noise" detected in such experiments, which is reduced during attention, is the sound produced by the muscles in proximity to the ear-including the middle ear muscles. All muscles produce low-frequency sound during contraction, but the implications for selective attention experiments-in which muscles near the ear are likely to be active-have not been adequately considered. This review and synthesis suggests that selective attention may reduce physiological noise in the ear canal by reducing the activity of muscles close to the ear. Indeed, such an experiment has already been done, but the significance of its findings have not been widely appreciated. Further sets of experiments are needed in this area.
Collapse
Affiliation(s)
- Andrew Bell
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
12
|
Jedrzejczak WW, Milner R, Ganc M, Pilka E, Skarzynski H. No Change in Medial Olivocochlear Efferent Activity during an Auditory or Visual Task: Dual Evidence from Otoacoustic Emissions and Event-Related Potentials. Brain Sci 2020; 10:E894. [PMID: 33238438 PMCID: PMC7700184 DOI: 10.3390/brainsci10110894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
The medial olivocochlear (MOC) system is thought to be responsible for modulation of peripheral hearing through descending (efferent) pathways. This study investigated the connection between peripheral hearing function and conscious attention during two different modality tasks, auditory and visual. Peripheral hearing function was evaluated by analyzing the amount of suppression of otoacoustic emissions (OAEs) by contralateral acoustic stimulation (CAS), a well-known effect of the MOC. Simultaneously, attention was evaluated by event-related potentials (ERPs). Although the ERPs showed clear differences in processing of auditory and visual tasks, there were no differences in the levels of OAE suppression. We also analyzed OAEs for the highest magnitude resonant mode signal detected by the matching pursuit method, but again did not find a significant effect of task, and no difference in noise level or number of rejected trials. However, for auditory tasks, the amplitude of the P3 cognitive wave negatively correlated with the level of OAE suppression. We conclude that there seems to be no change in MOC function when performing different modality tasks, although the cortex still remains able to modulate some aspects of MOC activity.
Collapse
Affiliation(s)
- W. Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Rafal Milner
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Malgorzata Ganc
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Edyta Pilka
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, ul. M. Mochnackiego 10, 02-042 Warsaw, Poland; (R.M.); (M.G.); (E.P.); (H.S.)
- World Hearing Center, ul. Mokra 17, 05-830 Nadarzyn, Poland
| |
Collapse
|
13
|
Jedrzejczak WW, Pilka E, Skarzynski PH, Skarzynski H. Reliability of contralateral suppression of otoacoustic emissions in children. Int J Audiol 2020; 60:438-445. [PMID: 33084414 DOI: 10.1080/14992027.2020.1834630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The purpose of the study was to determine the reliability in children of the medial olivocochlear reflex when measured as decibels of suppression of transiently evoked otoacoustic emissions (TEOAEs) by contralateral acoustic stimulation (CAS). DESIGN TEOAEs with and without CAS (white noise) were measured. In each subject, measurements were performed twice. Of particular interest was the suppression of TEOAEs by CAS and its reliability. Reliability was evaluated by calculating the standard error of measurement (SEM) and minimum detectable change (MDC). STUDY SAMPLE Fifty-one normally hearing girls aged 3-6 years. RESULTS The average global TEOAE suppression was around 0.6 dB. The highest reliability was for global values, with SEM of 0.2 dB and MDC of ±0.55 dB for the standard 2.5-20 ms recording window and slightly higher values for an 8-18 ms window. The worst reliability in the studied group was for the 1 kHz half-octave frequency band. Additionally, ears without spontaneous otoacoustic emissions had higher suppression levels than those with, but they also had lower signal-to-noise ratios, which may limit their clinical utility. CONCLUSIONS The current study shows that, under the studied paradigm, TEOAE suppression does not have satisfactory reliability since MDC was similar to the level of suppression.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| | - Edyta Pilka
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| | - Piotr Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland.,Heart Failure and Cardiac Rehabilitation Department, Medical University of Warsaw, Warsaw, Poland.,Institute of Sensory Organs, Kajetany, Poland
| | - Henryk Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland.,World Hearing Center, Kajetany, Poland
| |
Collapse
|
14
|
Rao A, Koerner TK, Madsen B, Zhang Y. Investigating Influences of Medial Olivocochlear Efferent System on Central Auditory Processing and Listening in Noise: A Behavioral and Event-Related Potential Study. Brain Sci 2020; 10:brainsci10070428. [PMID: 32635442 PMCID: PMC7408540 DOI: 10.3390/brainsci10070428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
This electrophysiological study investigated the role of the medial olivocochlear (MOC) efferents in listening in noise. Both ears of eleven normal-hearing adult participants were tested. The physiological tests consisted of transient-evoked otoacoustic emission (TEOAE) inhibition and the measurement of cortical event-related potentials (ERPs). The mismatch negativity (MMN) and P300 responses were obtained in passive and active listening tasks, respectively. Behavioral responses for the word recognition in noise test were also analyzed. Consistent with previous findings, the TEOAE data showed significant inhibition in the presence of contralateral acoustic stimulation. However, performance in the word recognition in noise test was comparable for the two conditions (i.e., without contralateral stimulation and with contralateral stimulation). Peak latencies and peak amplitudes of MMN and P300 did not show changes with contralateral stimulation. Behavioral performance was also maintained in the P300 task. Together, the results show that the peripheral auditory efferent effects captured via otoacoustic emission (OAE) inhibition might not necessarily be reflected in measures of central cortical processing and behavioral performance. As the MOC effects may not play a role in all listening situations in adults, the functional significance of the cochlear effects of the medial olivocochlear efferents and the optimal conditions conducive to corresponding effects in behavioral and cortical responses remain to be elucidated.
Collapse
Affiliation(s)
- Aparna Rao
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: (A.R.); (Y.Z.); Tel.: +1-480-727-2761 (A.R.); +1-612-624-7818 (Y.Z.)
| | - Tess K. Koerner
- VA RR & D National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA; (T.K.K.); (B.M.)
| | - Brandon Madsen
- VA RR & D National Center for Rehabilitative Auditory Research, Portland, OR 97239, USA; (T.K.K.); (B.M.)
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences & Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.R.); (Y.Z.); Tel.: +1-480-727-2761 (A.R.); +1-612-624-7818 (Y.Z.)
| |
Collapse
|
15
|
Lewis JD, Mashburn A, Lee D. Jittering stimulus onset attenuates short-latency, synchronized-spontaneous otoacoustic emission energy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:1504. [PMID: 32237807 DOI: 10.1121/10.0000848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Synchronized-spontaneous otoacoustic emissions (SSOAEs) are slow-decaying otoacoustic emissions (OAEs) that persist up to several hundred milliseconds following presentation of a transient stimulus. If the inter-stimulus interval is sufficiently short, SSOAEs will contaminate the stimulus window of the adjacent epoch. In medial-olivocochlear reflex (MOCR) assays, SSOAE contamination can present as a change in the stimulus between quiet and noise conditions, since SSOAEs are sensitive to MOCR activation. Traditionally, a change in the stimulus between MOCR conditions implicates acoustic reflex activation by the contralateral noise; however, this interpretation is potentially confounded by SSOAEs. This study examined the utility of jittering stimulus onset to desynchronize and cancel short-latency SSOAE energy. Transient-evoked (TE) OAEs and SSOAEs were measured from 39 subjects in contralateral-quiet and -noise conditions. Clicks were presented at fixed and quasi-random intervals (by introducing up to 8 ms of jitter). For the fixed-interval condition, spectral differences in the stimulus window between quiet and noise conditions mirrored those in the SSOAE analysis window, consistent with SSOAE contamination. In contrast, spectral differences stemming from SSOAEs were attenuated and/or absent in the stimulus window for the jitter conditions. The use of jitter did not have a statistically significant effect on either TEOAE level or the estimated MOCR.
Collapse
Affiliation(s)
- James D Lewis
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee 37996, USA
| | - Amy Mashburn
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee 37996, USA
| | - Donguk Lee
- Department of Audiology and Speech Pathology, University of Tennessee Health Science Center, Knoxville, Tennessee 37996, USA
| |
Collapse
|
16
|
Mertes IB. Medial olivocochlear reflex effects on synchronized spontaneous otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:EL235. [PMID: 32237820 DOI: 10.1121/10.0000886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
This study characterized medial olivocochlear (MOC) reflex activity on synchronized spontaneous otoacoustic emissions (SSOAEs) as compared to transient-evoked otoacoustic emissions (TEOAEs) in normal-hearing adults. Using two time windows, changes in TEOAE and SSOAE magnitude and phase due to a MOC reflex elicitor were quantified from 1 to 4 kHz. In lower frequency bands, changes in TEOAE and SSOAE magnitude were significantly correlated and were significantly larger for SSOAEs. Changes in TEOAE and SSOAE phase were not significantly different, nor were they significantly correlated. The larger effects on SSOAE magnitude may improve the sensitivity for detecting the MOC reflex.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820,
| |
Collapse
|