1
|
Munhoz-Garcia GV, Takeshita V, Pinácio CDW, Cardoso BC, Vecchia BD, Nalin D, Oliveira ALCD, Felix LF, Tornisielo VL. Radiometric approaches with carbon-14-labeled molecules for determining herbicide fate in plant systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117003. [PMID: 39244878 DOI: 10.1016/j.ecoenv.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Weeds cause economic losses in cropping systems, leading to the use of 1.7 million tons of herbicides worldwide for weed control annually. Once in the environment, herbicides can reach non-target organisms, causing negative impacts on the ecosystem. Herbicide retention, transport, and degradation processes determine their environmental fate and are essential to assure the safety of these molecules. Radiometric strategies using carbon-14 herbicides (14C) are suitable approaches for determining herbicide absorption, translocation, degradation, retention, and transport in soil, plants, and water. In this work, we demonstrate how 14C-herbicides can be used from different perspectives. Our work focused on herbicide-plant-environment interactions when the herbicide is applied (a) through the leaf, (b) in the soil, and (c) in the water. We also quantified the mass balance in each experiment. 14C-mesotrione foliar absorption increased with oil and adjuvant addition (5-6 % to 25-46 %), and translocation increased only with adjuvant. More than 80 % of 14C-quinclorac and 14C-indaziflam remained in the soil and cover crops species absorbed less than 20 % of the total herbicides applied. In water systems, Salvinia spp. plants removed 10-18 % of atrazine from the water. Atrazine metabolism was not influenced by the presence of the plants. The radiometric strategies used were able to quantify the fate of the herbicide in different plant systems and the mass balance varied from 70 % to 130 %. Importantly, we highlight a critical and practical view of tracking herbicides in different matrices. This technique can aid scientists to explore other pesticides as environmental contaminants.
Collapse
Affiliation(s)
| | - Vanessa Takeshita
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Piracicaba, SP 13400-970, Brazil.
| | - Camila de Werk Pinácio
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Brian Cintra Cardoso
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Bruno Dalla Vecchia
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Daniel Nalin
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Piracicaba, SP 13400-970, Brazil
| | - Ana Laura Camachos de Oliveira
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Leandro Fernando Felix
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Valdemar Luiz Tornisielo
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Piracicaba, SP 13400-970, Brazil
| |
Collapse
|
2
|
Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The main techniques used for organic pollutant removal from water are adsorption, reductive and oxidative processes, phytoremediation, bioremediation, separation by membranes and liquid–liquid extraction. In this review, strengths and weaknesses of the different purification techniques are discussed, with particular attention to the newest results published in the scientific literature. This study highlighted that adsorption is the most frequently used method for water purification, since it can balance high organic pollutants removal efficiency, it has the possibility to treat a large quantity of water in semi-continuous way and has acceptable costs.
Collapse
|
3
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|
4
|
Azab E, Hegazy AK, El-Sharnouby ME, Abd Elsalam HE. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:738-46. [PMID: 26771455 DOI: 10.1080/15226514.2015.1133559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.
Collapse
Affiliation(s)
- Ehab Azab
- a Department of Biotechnology , Faculty of Science, Taif University , Taif , Saudi Arabia
- b Department of Botany , Faculty of Science, Zagazig University , Zagazig , Egypt
| | - Ahmad K Hegazy
- c Department of Botany and Microbiology , Faculty of Science, Cairo University , Giza , Egypt
| | - Mohamed E El-Sharnouby
- a Department of Biotechnology , Faculty of Science, Taif University , Taif , Saudi Arabia
- d National Cent. Rad. Res. and Tech. Depart., Atomic Energy Authority Nasr City , Cairo , Egypt
| | - Hassan E Abd Elsalam
- a Department of Biotechnology , Faculty of Science, Taif University , Taif , Saudi Arabia
- e Soil and Water Technologies Department, Arid Land cultivation Research institute (ALCDI), City for Scientific Research and Technology Applications (CSAT), New Borg El-Arab , Alex , Egypt
| |
Collapse
|
5
|
Rylott EL, Johnston EJ, Bruce NC. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6519-33. [PMID: 26283045 DOI: 10.1093/jxb/erv384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|