1
|
Ashworth DJ, Ibekwe AM, Men Y, Ferreira JFS. Dissemination of antibiotics through the wastewater-soil-plant-earthworm continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159841. [PMID: 36397604 DOI: 10.1016/j.scitotenv.2022.159841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Under the ongoing climate change scenario, treated municipal wastewater (TMW) is a potential candidate for irrigated agriculture but may result in the exposure of agricultural environments to antibiotics. We studied the transfers of trimethoprim, sulfamethoxazole, and sulfapyridine in the TMW-soil-plant-earthworm continuum under greenhouse/laboratory conditions. Irrigation of potted spinach and radish with as-collected TMW resulted in no transfers of antibiotics into soil or plants owing to their low concentrations in the tertiary-treated TMW. However, TMW spiked with higher antibiotic concentrations led to transfers through this continuum. High initial inputs, slow soil degradation, and chemical speciation of the antibiotics, coupled with an extensive plant-root distribution, were important factors enhancing the plant uptake of antibiotics. In microcosm studies, transfers from vegetable materials into earthworms were low but showed potential for bioaccumulation. Such food chain transfers of antibiotics may be a driver for antibiotic resistance in agricultural systems, which is an area worthy of future study. These issues can perhaps be mitigated through high levels of TMW purification to effectively remove antibiotic compounds.
Collapse
Affiliation(s)
- Daniel J Ashworth
- United States Department of Agriculture-Agricultural Research Service, United States Salinity Laboratory, 450 W. Big Springs Rd, Riverside, CA 92507, United States of America.
| | - Abasiofiok M Ibekwe
- United States Department of Agriculture-Agricultural Research Service, United States Salinity Laboratory, 450 W. Big Springs Rd, Riverside, CA 92507, United States of America
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, 92521, United States of America
| | - Jorge F S Ferreira
- United States Department of Agriculture-Agricultural Research Service, United States Salinity Laboratory, 450 W. Big Springs Rd, Riverside, CA 92507, United States of America
| |
Collapse
|
2
|
Ramakrishnan B, Maddela NR, Venkateswarlu K, Megharaj M. Organic farming: Does it contribute to contaminant-free produce and ensure food safety? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145079. [PMID: 33482543 DOI: 10.1016/j.scitotenv.2021.145079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Organic farming for higher ecological and human health benefits has been adopted in about 186 countries, covering a total area of 71.5 Mha worldwide. Because of the associated practices, the flows of several environmental pollutants into the organic products threaten food safety and human health. The contaminants that occur at higher concentrations in organic produce include persistent organic pollutants (61.3-436.9 ng g-1 lamb meat, and 0.28 pg g-1-2.75 ng g-1 bovine meat), heavy metals (0.5-33.0 mg kg-1 lettuce), organochlorine pesticides (11-199 μg g-1 carrots), cyclodienes, hexachlorocyclohexanes, hexabromocyclododecane (2-3 times higher than in conventionally produced porcine meat), hexachlorobenzene (1.38-14.49 ng g-1 fat in milk), and non-brominated flame retardants (1.3-3.2 times higher than in conventional produce of greenhouse-grown tomato and cucumber). Moreover, some pollutants like per- and polyfluoroalkyl substances with a longer half-life (1.50-9.10 yrs) are reported to occur in several organic products. In fact, several legacy persistent organic pollutants are known for their significant trophic magnification in an urban terrestrial ecosystem. In addition, many plant functionalities are adversely affected in organic farming. Therefore, the long-term usage of organic products containing such pollutants poses a significant threat to human health. The major limitation in organic livestock production is the severe shortage of organic feed. Several variable standards and technical regulations set by the government and private agencies are the major obstacles in the global marketing of organic products. The present review critically addresses the impact of organic farming on hidden risks due to the use of composts as the amendment resources that enhance the phytoaccumulation and trophic transfer of pollutants, the functional diversity of the ecosystems, and poor harmonization among the policies and regulations in different countries for organic farming. The future directions of research have been suggested to mitigate unintended flows of pollutants into the organic products.
Collapse
Affiliation(s)
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
3
|
Ondon BS, Li S, Zhou Q, Li F. Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:121-153. [PMID: 33948742 DOI: 10.1007/398_2020_60] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soil is an essential part of our ecosystem and plays a crucial role as a nutrient source, provides habitat for plants and other organisms. Overuse of antibiotics has accelerated the development and dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARB and ARGs are recognized as emerging environmental contaminants causing soil pollution and serious risks to public health. ARB and ARGs are discharged into soils through several pathways. Application of manure in agriculture is one of the primary sources of ARB and ARGs dissemination in the soil. Different sources of contamination by ARB and ARGs were reviewed and analyzed as well as dissemination mechanisms in the soil. The effects of ARB and ARGs on soil bacterial community were evaluated. Furthermore, the impact of different sources of manure on soil microbial diversity as well as the effect of antibiotics on the development of ARB and ARGs in soils was analyzed. Human health risk assessments associated with the spreading of ARB and ARGs in soils were investigated. Finally, recommendations and mitigation strategies were proposed.
Collapse
Affiliation(s)
- Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Cheong MS, Seo KH, Chohra H, Yoon YE, Choe H, Kantharaj V, Lee YB. Influence of Sulfonamide Contamination Derived from Veterinary Antibiotics on Plant Growth and Development. Antibiotics (Basel) 2020; 9:antibiotics9080456. [PMID: 32731577 PMCID: PMC7460019 DOI: 10.3390/antibiotics9080456] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
Veterinary antibiotics such as sulfonamides are widely used to increase feed efficiency and to protect against disease in livestock production. The sulfonamide antimicrobial mechanism involves the blocking of folate biosynthesis by inhibiting bacterial dihydropteroate synthase (DHPS) activity competitively. Interestingly, most treatment antibiotics can be released into the environment via manure and result in significant diffuse pollution in the environment. However, the physiological effects of sulfonamide during plant growth and development remain elusive because the plant response is dependent on folate biosynthesis and the concentration of antibiotics. Here, we present a chemical interaction docking model between Napa cabbage (Brassica campestris) DHPS and sulfamethoxazole and sulfamethazine, which are the most abundant sulfonamides detected in the environment. Furthermore, seedling growth inhibition was observed in lentil bean (Lens culinaris), rice (Oryza sativa), and Napa cabbage plants upon sulfonamide exposure. The results revealed that sulfonamide antibiotics target plant DHPS in a module similar to bacterial DHPS and affect early growth and the development of crop seedlings. Taking these results together, we suggest that sulfonamides act as pollutants in crop fields.
Collapse
Affiliation(s)
- Mi Sun Cheong
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea
| | - Kyung Hye Seo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumsung 27709, Korea;
| | - Hadjer Chohra
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Young Eun Yoon
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Hyeonji Choe
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Vimalraj Kantharaj
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Yong Bok Lee
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-557-721-967
| |
Collapse
|
5
|
Toxic Effects of Single Antibiotics and Antibiotics in Combination on Germination and Growth of Sinapis alba L. PLANTS 2020; 9:plants9010107. [PMID: 31952171 PMCID: PMC7020151 DOI: 10.3390/plants9010107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Antibiotics enter agro-ecosystems via the application of farmyard manure, sewage sludge, animal by-products, or digestates. There are many open questions regarding the behavior of such compounds in the soil like their adsorption, degradation, half-life, and their effects on soil organisms and plants. The impact of antibiotics on the development of antibiotic resistance genes in the environment is regarded as the most important effect that endangers the environment as well as human health. Nevertheless, direct plant toxicity, especially of different antibiotics and heavy metals at the same time, can be of importance as well. In the current study, commercially available phytotoxkits were tested with regard to the toxicity of single antibiotics and antibiotics in combination with the root growth of Sinapis alba L. Additionally, a pot trial was conducted to study the transfer of the observed phytotoxkits results in more complex systems. The phytotoxkits revealed direct toxicity of antibiotics on root development only at high concentrations. The highest toxicity was determined for sulfadiazine, followed by tetracycline and enrofloxacin, showing the least toxicity. When two antibiotics were tested at the same time in the phytotoxkit, synergistic effects were detected. The pot trial indicated lower effect concentrations for enrofloxacin than determined in the phytotoxkit and, therefore, to higher toxicity on plant growth.
Collapse
|
6
|
Guo X, Mu Q, Zhong H, Li P, Zhang C, Wei D, Zhao T. Rapid removal of tetracycline by Myriophyllum aquaticum: Evaluation of the role and mechanisms of adsorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113101. [PMID: 31472457 DOI: 10.1016/j.envpol.2019.113101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
As a floating plant, Myriophyllum aquaticum provides a large surface area under water, and thus has high potential for the removal of pollutants through adsorption. The aim of this study was to evaluate the potential adsorption of tetracycline (TC) by M. aquaticum, and examine the underlying mechanisms. M. aquaticum exhibited a high potential for TC removal from water. Adsorption was the main mechanism for rapid TC removal by live M. aquaticum plants, due to its large contact area and ion exchange, accounting for about 99% and 54% of the total amount of TC removed within 2 h and 5 d, respectively. Further, the roots of M. aquaticum exhibited a higher adsorption capacity than the stems or leaves, as the roots had the largest specific surface area. Fourier transform infrared spectroscopy analysis and identification of functional groups showed that -OH, -COOH, and -NH2 groups are involved in the adsorption process. The use of M. aquaticum may be a promising approach for TC removal from aquatic environments, especially in terms of shortening reaction times.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qingzheng Mu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tongke Zhao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
7
|
Kurwadkar S, Struckhoff G, Pugh K, Singh O. Uptake and translocation of sulfamethazine by alfalfa grown under hydroponic conditions. J Environ Sci (China) 2017; 53:217-223. [PMID: 28372746 DOI: 10.1016/j.jes.2016.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 06/07/2023]
Abstract
Antibiotics are routinely used in intensive animal agriculture operations collectively known as Concentrated Animal Feed Operations (CAFO) which include dairy, poultry and swine farms. Wastewater generated by CAFOs often contains low levels of antibiotics and is typically managed in an anaerobic lagoon. The objective of this research is to investigate the uptake and fate of aqueous sulfamethazine (SMN) antibiotic by alfalfa (Medicago sativa) grass grown under hydroponic conditions. Uptake studies were conducted using hydroponically grown alfalfa in a commercially available nutrient solution supplemented with 10mg/L of SMN antibiotic. Analysis of alfalfa sap, root zone, middle one-third, and top portion of the foliage showed varying uptake rate and translocation of SMN. The highest average amount of SMN (8.58μg/kg) was detected in the root zone, followed by the top portion (1.89μg/kg), middle one-third (1.30μg/kg), and sap (0.38μg/kg) samples, indicating a clear distribution of SMN within the sampled regions. The ultraviolet (UV) spectra of parent SMN and translocated SMN identified in different parts of the plant present the possibility of metabolization during the uptake process. Uptake of SMN using alfalfa grown under hydroponic conditions has potential as a promising remediation technology for removal of similar antibiotics from wastewater lagoons.
Collapse
Affiliation(s)
- Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, Fullerton, CA 92831, USA.
| | - Garrett Struckhoff
- Department of Civil and Environmental Engineering, California State University, Fullerton, CA 92831, USA
| | | | - Om Singh
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
| |
Collapse
|
8
|
Pierattini EC, Francini A, Raffaelli A, Sebastiani L. Morpho-physiological response of Populus alba to erythromycin: A timeline of the health status of the plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:540-547. [PMID: 27366984 DOI: 10.1016/j.scitotenv.2016.06.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
Populus alba Villafranca clone was chosen for a proof of concept study to determine the potential uptake and accumulation of antibiotics by trees. Plants were grown hydroponically and irrigated with a recirculating Hoagland's nutrient solution (control) and Hoagland's nutrient solution fortified with erythromycin at 0.01, 0.1 and 1mgL(-1). After 3 and 28days of treatment, poplar plants were separated into roots, stem, and leaves. Plants showed good health all over the period of treatment, and no differences in poplar growth for all the concentrations of erythromycin tested were observed. Quantification of erythromycin was performed using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS) in positive ion mode using multiple reaction ion monitoring. Erythromycin was detected in all organs analyzed. Roots showed an erythromycin concentration tenfold higher than leaves. The photochemical efficiency of photosystem II did not show a dose-dependant trend. From the quenching analysis of chlorophyll fluorescence, low nonphotochemical quenching (NPQ) and high photochemical quenching (qP) for the first week of erythromycin exposure was observed, depending on leaves position along the stem. Results suggest a short term adaptation of the photosynthetic apparatus of Populus alba in response to environmental realistic erythromycin concentrations.
Collapse
Affiliation(s)
- Erika Carla Pierattini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127 Pisa, Italy
| | - Alessandra Francini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127 Pisa, Italy.
| | - Andrea Raffaelli
- CNR - Istituto di Fisiologia Clinica, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Luca Sebastiani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127 Pisa, Italy
| |
Collapse
|
9
|
Tasho RP, Cho JY. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:366-376. [PMID: 27139307 DOI: 10.1016/j.scitotenv.2016.04.140] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Therapeutic and sub-therapeutic use of antibiotics in livestock farming is and has been, a common practice worldwide. These bioactive organic compounds have short retention period and partial uptake into the animal system. The uptake effects of this pharmaceutics, with plants as the primary focus, has not been reviewed so far. This review addresses three main concerns 1) the extensive use of veterinary antibiotics in livestock farming, 2) disposal of animal waste containing active biosolids and 3) effects of veterinary antibiotics in plants. Depending upon the plant species and the antibiotic used, the response can be phytotoxic, hormetic as well as mutational. Additionally, the physiological interactions that make the uptake of these compounds relatively easy have also been discussed. High water solubility, longer half-lives, and continued introduction make them relatively persistent in the environment. Lastly, some prevention measures that can help limit their impact on the environment have been reviewed. There are three methods of control: treatment of animal manure before field application, an alternative bio-agent for disease treatment and a well targeted legalized use of antibiotics. Limiting the movement of these biosolids in the environment can be a challenge because of their varying physiological interactions. Electron irradiation and supervised inoculation of beneficial microorganisms can be effective remediation strategies. Thus, extensive future research should be focused in this area.
Collapse
Affiliation(s)
- Reep Pandi Tasho
- Department of Agricultural Chemistry, Building No. 3-2, Room 104, Chonbuk National University, Jeonju-si 561-756, Jeollabuk-do, Republic of Korea.
| | - Jae Yong Cho
- Department of Agricultural Chemistry, Building No. 3-2, Room 104, Chonbuk National University, Jeonju-si 561-756, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
10
|
You R, Sun H, Yu Y, Lin Z, Qin M, Liu Y. Time-dependent hormesis of chemical mixtures: A case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:45-53. [PMID: 26645135 DOI: 10.1016/j.etap.2015.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/24/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Sulfa antibiotics (SAs) and quorum-sensing inhibitor (QSI) may pose potential ecological risks because mixed using of them has been proposed to inhibit bacteria from generating antibiotic resistance. This study investigated the time-dependent hormesis of single and binary mixtures of QSI and SAs of Vibrio fischeri (V. fischeri) for 0-24 h. Although the low-dose SAs stimulated the expression of LuxR protein, the high-dose SAs could inhibit bacteria growth by competitively binding to dihydropteroate synthase. Moreover, AinR protein was bound to Benzofuran-3(2H)-one (B3O) with low concentration, thus the N-octanoyl homoserine lactone signal molecules (C8) has chance to bind to LuxR protein to promote light emission. The hormesis effect induced by the mixtures could be deduced that SAs promoted the expression of LuxR protein and B3O increases the chance of C8 binding to LuxR. Our findings facilitate new insight into the mechanistic study of hormesis and ecological risks of the chemical mixtures.
Collapse
Affiliation(s)
- Ruirong You
- College of Materials Science and Engineering, Fuzhou University, Fujian Province 350108, China; Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian Province University, China
| | - Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, Fujian Province 350108, China; Key Laboratory of Eco-materials Advanced Technology (Fuzhou University), Fujian Province University, China.
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; Collaborative Innovation Center for Regional Environmental Quality, Beijing, China.
| | - Mengnan Qin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China
| |
Collapse
|
11
|
Michelini L, Meggio F, Reichel R, Thiele-Bruhn S, Pitacco A, Scattolin L, Montecchio L, Alberghini S, Squartini A, Ghisi R. Sulfadiazine uptake and effects in common hazel (Corylus avellana L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13362-13371. [PMID: 25940473 DOI: 10.1007/s11356-015-4560-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Soil contamination by antibiotics is a possible consequence of animal husbandry waste, sewage sludge, and reclaimed water spreading in agriculture. In this study, 1-year-old hazel plants (Corylus avellana L.) were grown in pots for 64 days in soil spiked with sulfadiazine (SDZ) in the range 0.01-100 mg kg(-1) soil. Leaf gas exchanges, fluorescence parameters and plant growth were measured regularly during the experiment, whereas plant biomass, sulfonamide concentrations in soil and plant tissues, and the quantitative variation of culturable bacterial endophytes in leaf petiole were analyzed at the end of the trial. During the experiment, photosynthesis and leaf transpiration as well as fluorescence parameters were progressively reduced by the antibiotic. Effects were more evident for leaf transpiration and for the highest SDZ spiking concentrations, whereas growth analyses did not reveal negative effects of the antibiotic. At the end of the trial, a high number of culturable endophytic bacteria in the leaf petiole of plants treated with 0.1 and 0.01 mg kg(-1) were observed, and SDZ was extractable from soil and plant roots for spiking concentrations ≥1 mg kg(-1). Inside plants, the antibiotic was mainly stored at the root level with bioconcentration factors increasing with the spiking dose, and the hydroxylated derivate 4-OH-SDZ was the only metabolite detected. Overall results show that 1-year-old hazel plants can contribute to the reduction of sulfonamide concentrations in the environment, however, sensitive reactions to SDZ can be expected at the highest contamination levels.
Collapse
Affiliation(s)
- Lucia Michelini
- Department of Agronomy, Food, Natural Resources, Animals, Environment (DAFNAE), University of Padova, Agripolis, viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|