1
|
Chiudioni F, Marcheggiani S, Puccinelli C, Trabace T, Mancini L. Heavy metals in tributaries of Tiber River in the urban area of Rome (Italy). Heliyon 2024; 10:e33964. [PMID: 39071676 PMCID: PMC11283157 DOI: 10.1016/j.heliyon.2024.e33964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Both natural and anthropogenic activities are responsible for heavy metal abundance in the environment. Due to the high persistence, heavy metals can accumulate and remain in the sediment for very long periods, becoming a source of contaminants for aquatic biota. Within small urbanized watercourse catchments, the accumulation of heavy metals in bottom sediments takes place and sediments can be adopted as an efficient indicator for monitoring heavy metal pollution levels and pollution sources in aquatic environments. Tiber River, the most polluted river among the 20 longest Italian rivers, has different tributaries distributed from north to south of Rome city. The aim of the study was to evaluate the heavy metal pollution in water and sediment of six Tiber River small tributaries through the use of land cover, water physico-chemical parameters and geochemical multi-index (Concentration factor, Pollution Load index, Enrichment factor and Geoaccumulation index). The results indicate that in general the contamination of water and sediments is moderate as the threshold values are exceeded only by some metals and in some sites. As regards the indices that evaluate the enrichment factors, it has been seen that some sampling sites have high values of specific metal enrichment (As, Hg, Pb). A more compromised situation is highlighted by the Concentration Factor and the Pollution Load index where more than half of the sampling sites are found at levels of significant heavy metal pollution suggesting that point sources of heavy metals in the water and sediments should be closely monitored by the use of combined analysis.
Collapse
Affiliation(s)
- F. Chiudioni
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| | - S. Marcheggiani
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| | - C. Puccinelli
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| | - T. Trabace
- Centro di Ricerche di Metaponto ARPAB, Metaponto, Italy
| | - L. Mancini
- Istituto Superiore di Sanità, Dep. Environment and Health, Ecosystem and Health Unit Rome, Italy
| |
Collapse
|
2
|
Tshithukhe G, Motitsoe SN, Hill MP. Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122676. [PMID: 34961147 PMCID: PMC8703371 DOI: 10.3390/plants10122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 05/03/2023]
Abstract
There is continuous deterioration of freshwater systems globally due to excessive anthropogenic inputs, which severely affect important socio-economic and ecological services. We investigated the water and sediment quality at 10 sites along the severely modified Swartkops River system in the Eastern Cape Province of South Africa and then quantified the phytoremediation potential by native and non-native macrophyte species over a period of 6 months. We hypothesized that the presence of semi and permanent native and non-native macrophytes mats would reduce water and sediment contamination through assimilation downriver. Our results were variable and, thus, inconsistent with our hypotheses; there were no clear trends in water and sediment quality improvement along the Swartkops River. Although variable, the free-floating non-native macrophyte, Pontederia (=Eichhornia) crassipes recorded the highest assimilation potential of heavy metals in water (e.g., Fe and Cu) and sediments (e.g., Fe and Zn), followed by a submerged native macrophyte, Stuckenia pectinatus, and three native emergent species, Typha capensis, Cyperus sexangularis, and Phragmites australis. Pollution indices clearly showed the promising assimilation by native and non-native macrophytes species; however, the Swartkops River was heavily influenced by multiple non-point sources along the system, compromising the assimilation effect. Furthermore, we emphasise that excessive anthropogenic inputs compromise the system's ability to assimilate heavy metals inputs leading to water quality deterioration.
Collapse
|
3
|
Skorbiłowicz E, Skorbiłowicz M, Tarasiuk U, Korzińska M. Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910193. [PMID: 34639492 PMCID: PMC8508360 DOI: 10.3390/ijerph181910193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
The aim of the presented article was to determine whether human activity significantly influenced the enrichment of Cd, Co, and Cr, in river sediments and Glyceria maxima, in the basin of the Pisa River, an underdeveloped area in Poland. In this study, the content and spatial distribution of Cd, Cr, and Co in the organs underground and above ground, (sequentially: root, stem, leaf) of Glyceria maxima and bottom sediments of the Pisa River and its tributaries (Pisza Woda, Wincenta, Turośl and Skroda River) were analyzed. The Potentially toxic elements (PTEs) were determined by ASA method (Atomic Absorption Spectrometry). The results showed that the average PTEs contents in the river sediments occurred in the following descending order of Cd < Co < Cr. The highest values of the Igeo, CF coefficients, i.e., the greatest impact of anthropogenic activities on the water environment of the Pisa River and its tributaries, were found especially in the case of Cd. The research on the plant material has shown that the highest content of Cr and Co occurs in the roots, then in the stems, and the least in the leaves of Glyceria maxima. However, the amounts of Cd in the examined parts of Glyceria maxima had similar values. The content of Cd, Cr, and Co in the roots and above-ground parts exceeded the physiological values. Glyceria maxima can be used as a biological indicator material. Statistical analyzes showed the movement of PTEs in the sediment-root-stem-leaf system and identified the sources of PTEs, i.e., municipal wastewater treatment plants, the local food industry, and surface runoff.
Collapse
|
4
|
Ozyigit II, Arda L, Yalcin B, Yalcin IE, Ucar B, Hocaoglu-Ozyigit A. Lemna minor, a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: a physiological and genetic approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1255-1269. [PMID: 33662215 DOI: 10.1080/15226514.2021.1892586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, to determine whether having potential to be used as hyperaccumulator for Cd and Ni, numerous experiments were designed for conducting assessments for physiological and genotoxic changes along with defining possible alterations on mineral nutrient status of Lemna minor L. by applying Cd-Ni binary treatments (0, 100, 200 and 400 µM). Our study revealed that there were increases in the concentrations of B, Cr, Fe, K, Mg, and Mn whereas decreases were noticed in the concentrations of Na and Zn and the levels of Ca were inversely proportional to Cd-Ni applications showing tendency to increase at the low concentration and to decrease at the high concentration. Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) analyses revealed that rather than band losses and new band formations, mostly intensity changes in the band profiles, and low polymorphism and high genomic template stability (GTS) were observed. Although, to date, L. minor was defined as an efficient hyperaccumulator/potential accumulator or competent phytoremedial agent by researchers. Our research revealed that L. minor showing high accumulation capability for Cd and having low polymorphism rate and high genomic template stability is a versatile hyperaccumulator, especially for Cd; therefore, highly recommended by us for decontamination of water polluted with Cd. NOVELTY STATEMENTMany studies have been focused on the effects of individual metal ions. However, heavy metal contaminants usually exist as their mixtures in natural aquatic environments. Especially, Cd and Ni coexist in industrial wastes.In this study, the accumulation properties of Lemna minor for both Cd and Ni were investigated and the effects of Cd and Ni on the bioaccumulation of B, Ca, Cu, Fe, Mg, K, Mn, Na, Pb and Zn in L. minor were also determined. This study furthermore aimed to assess the genotoxic effects of Cd and Ni found in being extended concentrations on DNA using the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) method.
Collapse
Affiliation(s)
- Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Lutfi Arda
- Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Bestenur Yalcin
- Program of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Bihter Ucar
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Chiudioni F, Marcheggiani S, Puccinelli C, Mancini L. Interaction between bacterial enteric pathogens and aquatic macrophytes. Can Salmonella be internalized in the plants used in phytoremediation processes? INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:18-25. [PMID: 32634324 DOI: 10.1080/15226514.2020.1786797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The environment is considered a reservoir of pathogens and a possible source of infection for animals and humans. The association between enteric pathogens and food plants has been demonstrated in several studies, while few studies have addressed possible interactions between human pathogens and aquatic plants. This study, performed by setting mesocosms, evaluates the interaction between an enteric pathogen (Salmonella enterica serovar Napoli, S. Napoli) and a macrophyte (Phragmites australis (Cav.) Trin. ex Steudel) and the possible ability of the bacterium to internalize into the plant. The results show that S. Napoli concentration decreased gradually in growth solution without plants (control) while it was able to persist adhering to submerged parts of plants in treated mesocosms. The adhesion of the bacterium remained stable for 20 days, then decreased gradually until the end of the experiment. In addition, S. Napoli was able to internalize and colonize stems and leaves. In conclusion, the study suggests that macrophytes can represent an alternative environmental reservoir of pathogens for humans and animals. The adhesion to roots and rhizomes and the internalization could contribute to the bacterial persistence in the aquatic ecosystems by playing an important role in ecology and transmission of pathogens.
Collapse
Affiliation(s)
- Filippo Chiudioni
- Department of Enviroment and Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Stefania Marcheggiani
- Department of Enviroment and Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Camilla Puccinelli
- Department of Enviroment and Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Laura Mancini
- Department of Enviroment and Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| |
Collapse
|
6
|
Ceschin S, Crescenzi M, Iannelli MA. Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15806-15814. [PMID: 32088823 DOI: 10.1007/s11356-020-08045-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Phytoremediation potential of duckweeds (Lemna minuta, Lemna minor) to remove nutrients from simulated wastewater was analyzed. In two separate experiments, the two species were grown for 28 days in waters enriched with nitrate and phosphate to simulate nutrient concentrations of domestic wastewater. Water physical and chemical measurements (temperature, pH, conductivity, oxygen) and plant physiological and biochemical analysis (biomass, relative growth rate-RGR, nutrient and chlorophyll contents, peroxidative damage, bioconcentration factor-BCF) were made to test and compare the phytoremediation capacity of the two Lemna species. L. minuta biomass increased almost tenfold during the time-course of the treatment resulting in a doubling of the mat thickness and a RGR of 0.083 ± 0.001 g/g day. Maximum frond content of phosphate was reached by day 21 (increase over 165%) and nitrate by day 7 (10%). According to the BCF results (BCF > 1000), L. minuta was a hyperaccumulator for both nutrients. On the other hand, L. minor biomass and mat thickness decreased continuously during incubation (RGR = - 0.039 ± 0.004 g/g day). In L. minor fronds, phosphate content increased until day 14, after which there was a decrease until the end of the incubation. Frond nitrate content significantly decreased by day 7, but then remained relatively constant until the end of the experiment. L. minor proved to be hyperaccumulator for phosphates, but not for nitrates. Results indicated L. minuta has a greater potential than L. minor to remove both nutrients by bioaccumulation, especially phosphates, demonstrated also by better physiological and biochemical responses. However, during the incubation, the chlorophyll content of L. minuta mat did continuously decrease and peroxidative damage had increased until day 14, indicating that the system was under some kind of stress. Strategies to avoid this stress were discussed.
Collapse
Affiliation(s)
- Simona Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Marco Crescenzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Salaria Km 29,300, 00015, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
7
|
Ziegler P, Sree KS, Appenroth KJ. Duckweed biomarkers for identifying toxic water contaminants? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14797-14822. [PMID: 30397749 DOI: 10.1007/s11356-018-3427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Surface or ground waters can be contaminated with numerous toxic substances. The duckweeds Lemna minor and Lemna gibba are widely used for assaying waterborne toxicity to higher plants in terms of growth inhibition and photosynthetic pigment reduction. These tests cannot, however, in themselves determine the nature of the agents responsible for toxicity. Morphological, developmental, physiological, biochemical, and genetic responses of duckweeds to exposure to toxic water contaminants constitute biomarkers of toxic effect. In principle, the very detection of these biomarkers should enable the contaminants having elicited them (and being responsible for the toxicity) to be identified. However, in practice, this is severely compromised by insufficient specificity of biomarkers for their corresponding toxicants and by the lack of documentation of biomarker/toxin relationships. The present contribution illustrates the difficulties of using known water contaminant-related duckweed biomarkers to identify toxins, and discusses possibilities for achieving this goal.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| | - Kandregula Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye, 671316, India
| | - Klaus-Jürgen Appenroth
- Matthias-Schleiden Institute, Department of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743, Jena, Germany
| |
Collapse
|
8
|
Tang C, Zhang R, Hu X, Song J, Li B, Ou D, Hu X, Zhao Y. Exogenous spermidine elevating cadmium tolerance in Salix matsudana involves cadmium detoxification and antioxidant defense. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:305-315. [PMID: 30648425 DOI: 10.1080/15226514.2018.1524829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
In this study, exogenous spermidine role on Salix matsudana tolerance to cadmium was evaluated. Spermidine and cadmium presented antagonistic effects on the biomass, copper and zinc concentrations in S. matsudana. cadmium mainly distributed in the cell wall of subcellular fraction; 46.97%-60.43% of cadmium existed in a sodium chloride-extracted form. Cadmium contents in roots, leaves, and twigs ranged from 2002.67 to 3961.00, 111.59 to 229.72, and 102.56 to 221.27 mg/kg, respectively. Spermidine application elevated cadmium concentrations in the roots, cuttings, and cell wall and the ratio of deionized water-extracted cadmium, but decreased cadmium levels in the twigs and leaves and the fractions of cadmium extracted by ethanol and sodium chloride, respectively. Putrescine and malondialdehyde were important indicators of cadmium-induced oxidative damage. Exogenous spermidine alleviated the accumulation of superoxide anion, hydrogen peroxide, malondialdehyde via promoting the levels of spermidine, soluble protein, superoxide dismutase, reductive ascorbate, glutathione reductase, and glutathione peroxidase in S. matsudana leaves under the corresponding cadmium stress. The results indicated that S. matsudana was a candidate for cadmium rhizoremediation and extraction in leaves; the spermidine application enhanced the cadmium tolerance of S. matsudana through promoting cadmium accumulation in roots, cell wall, and less bioactive chemical forms and the antioxidative ability.
Collapse
Affiliation(s)
- Chunfang Tang
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Riqing Zhang
- b College of Forestry , Central South University of Forestry and Technology , Changsha , China
| | - Xinjiang Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| | - Jinfeng Song
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Bing Li
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Danling Ou
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Xi Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Yunlin Zhao
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| |
Collapse
|