1
|
Kang MJ, Kim HS, Zhang Y, Park K, Jo HY, Finneran KT, Kwon MJ. Potential natural attenuation of petroleum hydrocarbons in fuel contaminated soils: Focusing on anaerobic fuel biodegradation involving microbial Fe(III) reduction. CHEMOSPHERE 2023; 341:140134. [PMID: 37690548 DOI: 10.1016/j.chemosphere.2023.140134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Liquid fossil fuels, collectively known as total petroleum hydrocarbons (TPHs), are highly toxic and frequently leak into subsurface environments due to anthropogenic activities. As an in-situ biological remedial option for TPH contamination, aerobic TPH biodegradation is limited due to oxygen's low solubility in water, and because it is consumed quickly by aerobic bacteria. Thus, we investigated the potential of anaerobic TPH degradation by indigenous fermenting bacteria and Fe(III)-reducing bacteria. Twenty 6-10 m soil cores were collected from a closed military base subject to ongoing TPH contamination since the 1980s. Physicochemical and microbial properties were determined at 0.5-m intervals in each core. To assess the relationship between TPH degradation and microbial Fe(III) reduction, soil samples were grouped into high-TPH (>500 mg kg-1) and high-Fe(II) (>450 mg kg-1), high-TPH and low-Fe(II), low-TPH and high-Fe(II), and low-TPH and low-Fe(II) groups. Alpha diversity was significantly lower in high-TPH groups than in low-TPH groups, suggesting that high TPH concentrations exerted a strong selective pressure on bacterial communities. In the high-TPH and low-Fe(II) group, fermenting bacteria, including Microgenomatia and Chlamydiae, were more abundant, suggesting that TPH biodegradation occurred via fermentation. In the high-TPH and high-Fe(II) group, Fe(III)-reducing bacteria, including Geobacter and Zoogloea, were more abundant, suggesting that microbial Fe(III) reduction enhances TPH biodegradation. In contrast, the fermenting and/or Fe(III)-reducing bacteria were not statistically abundant in the low-TPH groups.
Collapse
Affiliation(s)
- Myeong-Jung Kang
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Kanghyun Park
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea
| | - Kevin T Finneran
- Department of Environmental Engineering and Earth Sciences, Clemson University, United States
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Republic of Korea.
| |
Collapse
|
2
|
Gou Y, Song Y, Yang S, Yang Y, Cheng Y, Li J, Zhang T, Cheng Y, Wang H. Polycyclic aromatic hydrocarbon removal from subsurface soil mediated by bacteria and archaea under methanogenic conditions: Performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120023. [PMID: 36030953 DOI: 10.1016/j.envpol.2022.120023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In situ anoxic bioremediation is an easy-to-use technology to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Degradation of PAHs mediated by soil bacteria and archaea using CO2 as the electron acceptor is an important process for eliminating PAHs under methanogenic conditions; however, knowledge of the performance and mechanisms involved is poorly unveiled. In this study, the effectiveness and efficiency of NaHCO3 (CO2) as an electron acceptor to stimulate the degradation of PAHs by bacteria and archaea in highly contaminated soil were investigated. The results showed that CO2 addition (EC2000) promoted PAH degradation compared to soil without added CO2 (EC0), with 4.18%, 9.01%-8.05%, and 6.19%-12.45% increases for 2-, 3- and 4-ring PAHs after 250 days of incubation, respectively. Soil bacterial abundances increased with increasing incubation time, especially for EC2000 (2.90 × 108 g-1 soil higher than EC0, p < 0.05). Different succession patterns of the soil bacterial and archaeal communities during PAH degradation were observed. According to the PCoA and ANOSIM results, the soil bacterial communities were greatly (ANOSIM: R = 0.7232, P = 0.001) impacted by electron acceptors, whereas significant differences in the archaeal communities were not observed (ANOSIM: R = 0.553, P = 0.001). Soil bacterial and archaeal co-occurrence network analyses showed that positive correlations outnumbered the negative correlations throughout the incubation period for both treatments (e.g., EC0 and EC2000), suggesting the prevalence of coexistence/cooperation within and between these two domains rather than competition. The higher complexity, connectance, edge, and node numbers in EC2000 revealed stronger linkage and a more stable co-occurrence network compared to EC0. The results of this study could improve the knowledge on the removal of PAHs and the responses of soil bacteria and archaea to CO2 application, as well as a scientific basis for the in situ anoxic bioremediation of PAH-contaminated industrial sites.
Collapse
Affiliation(s)
- Yaling Gou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yun Song
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Sucai Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yan Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yanan Cheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jiabin Li
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Tengfei Zhang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yanjun Cheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Franchi E, Cardaci A, Pietrini I, Fusini D, Conte A, De Folly D’Auris A, Grifoni M, Pedron F, Barbafieri M, Petruzzelli G, Vocciante M. Nature-Based Solutions for Restoring an Agricultural Area Contaminated by an Oil Spill. PLANTS (BASEL, SWITZERLAND) 2022; 11:2250. [PMID: 36079632 PMCID: PMC9459758 DOI: 10.3390/plants11172250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A feasibility study is presented for a bioremediation intervention to restore agricultural activity in a field hit by a diesel oil spill from an oil pipeline. The analysis of the real contaminated soil was conducted following two approaches. The first concerned the assessment of the biodegradative capacity of the indigenous microbial community through laboratory-scale experimentation with different treatments (natural attenuation, landfarming, landfarming + bioaugmentation). The second consisted of testing the effectiveness of phytoremediation with three plant species: Zea mays (corn), Lupinus albus (lupine) and Medicago sativa (alfalfa). With the first approach, after 180 days, the different treatments led to biodegradation percentages between 83 and 96% for linear hydrocarbons and between 76 and 83% for branched ones. In case of contamination by petroleum products, the main action of plants is to favor the degradation of hydrocarbons in the soil by stimulating microbial activity thanks to root exudates. The results obtained in this experiment confirm that the presence of plants favors a decrease in the hydrocarbon content, resulting in an improved degradation of up to 18% compared with non-vegetated soils. The addition of plant growth-promoting bacteria (PGPB) isolated from the contaminated soil also promoted the growth of the tested plants. In particular, an increase in biomass of over 50% was found for lupine. Finally, the metagenomic analysis of the contaminated soil allowed for evaluating the evolution of the composition of the microbial communities during the experimentation, with a focus on hydrocarbon- oxidizing bacteria.
Collapse
Affiliation(s)
- Elisabetta Franchi
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Anna Cardaci
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Ilaria Pietrini
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Danilo Fusini
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Alessandro Conte
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Alessandra De Folly D’Auris
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Martina Grifoni
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Pedron
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Meri Barbafieri
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gianniantonio Petruzzelli
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marco Vocciante
- Department of Chemistry and Industrial Chemistry, Università Degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
4
|
Morales-Guzmán G, Ferrera-Cerrato R, Rivera-Cruz MDC, Torres-Bustillos LG, Mendoza-López MR, Esquivel-Cote R, Alarcón A. Phytoremediation of soil contaminated with weathered petroleum hydrocarbons by applying mineral fertilization, an anionic surfactant, or hydrocarbonoclastic bacteria. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:329-338. [PMID: 35704711 DOI: 10.1080/15226514.2022.2083577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study evaluated the effect of the application of mineral fertilization (F), the anionic surfactant Triton X-100 (TX100), or the inoculation with a hydrocarbooclastic bacterial consortium (BCons) on the growth of Clitoria ternatea during the phytoremediation of a Gleysol contaminated with weathered petroleum hydrocarbons (39,000 mg kg-1 WPH) collected from La Venta, Tabasco (Mexico). The experiment consisted of a completely randomized design with seven treatments and four replications each under greenhouse conditions. The application of F (biostimulation) increased plant growth and biomass production; in contrast, TX100 only favored root biomass (11%) but significantly favored WPH degradation. Bioaugmentation with BCons did not show significant effects on plant growth. Nevertheless, the combination of biostimulation with bioaugmentation (BCons + F, BCons + TX100, and BCons + F+TX100) enhanced plant growth, hydrocarbonoclastic bacteria population, and WPH degradation when compared to treatments with the single application of bioaugmentation (BCons) or biostimulation (F).
Collapse
Affiliation(s)
- Gilberto Morales-Guzmán
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - Ronald Ferrera-Cerrato
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - María Del Carmen Rivera-Cruz
- Posgrado en Producción Agroalimentaria en el Trópico, Colegio de Postgraduados, Periférico Carlos A, Cárdenas, Tabasco, Mexico
| | - Luis Gilberto Torres-Bustillos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (UPIBI-IPN), Ciudad de Mexico, Mexico
| | - Ma Remedios Mendoza-López
- Unidad de Servicios de Apoyo en Resolución Analítica. Universidad Veracruzana, Dr. Luis Castelazo Ayala S/N, Col. Industrial-Animas, Xalapa, Veracruz, Mexico
| | - Rosalba Esquivel-Cote
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| | - Alejandro Alarcón
- Posgrado de Edafología, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico
| |
Collapse
|
5
|
Pavlova ON, Izosimova ON, Chernitsyna SM, Ivanov VG, Pogodaeva TV, Khabuev AV, Gorshkov AG, Zemskaya TI. Anaerobic oxidation of petroleum hydrocarbons in enrichment cultures from sediments of the Gorevoy Utes natural oil seep under methanogenic and sulfate-reducing conditions. MICROBIAL ECOLOGY 2022; 83:899-915. [PMID: 34255112 DOI: 10.1007/s00248-021-01802-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
This article presents the first experimental data on the ability of microbial communities from sediments of the Gorevoy Utes natural oil seep to degrade petroleum hydrocarbons under anaerobic conditions. Like in marine ecosystems associated with oil discharge, available electron acceptors, in particular sulfate ions, affect the composition of the microbial community and the degree of hydrocarbon conversion. The cultivation of the surface sediments under sulfate-reducing conditions led to the formation of a more diverse bacterial community and greater loss of n-alkanes (28%) in comparison to methanogenic conditions (6%). Microbial communities of both surface and deep sediments are more oriented to degrade polycyclic aromatic hydrocarbons (PAHs), to which the degree of the PAH conversion testifies (up to 46%) irrespective of the present electron acceptors. Microorganisms with the uncultured closest homologues from thermal habitats, sediments of mud volcanoes, and environments contaminated with hydrocarbons mainly represented microbial communities of enrichment cultures. The members of the phyla Firmicutes, Chloroflexi, and Caldiserica (OP5), as well as the class Deltaproteobacteria and Methanomicrobia, were mostly found in enrichment cultures. The influence of gas-saturated fluids may be responsible for the presence in the bacterial 16S rRNA gene libraries of the sequences of "rare taxa": Planctomycetes, Ca. Atribacteria (OP9), Ca. Armatimonadetes (OP10), Ca. Latescibacteria (WS3), Ca. division (AC1), Ca. division (OP11), and Ca. Parcubacteria (OD1), which can be involved in hydrocarbon oxidation.
Collapse
Affiliation(s)
- O N Pavlova
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| | - O N Izosimova
- Laboratory of Chromatography, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - S M Chernitsyna
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - V G Ivanov
- Laboratory of Hydrology and Hydrophysics, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T V Pogodaeva
- Laboratory of Hydrochemistry and Atmosphere Chemistry, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A V Khabuev
- Laboratory of Lake Baikal Geology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - A G Gorshkov
- Laboratory of Chromatography, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - T I Zemskaya
- Laboratory of Hydrocarbon Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
6
|
Alvand N, Baghdadi M, Alimoradi M, Marjani A, Isfahani TM. Metal-Phase Microextraction (MPME) as a Novel Solvent-Free and Green Sample Preparation Technique: Determination of Cadmium in Infant Formula and Real Water Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Jayaramaiah RH, Egidi E, Macdonald CA, Wang J, Jeffries TC, Megharaj M, Singh BK. Soil initial bacterial diversity and nutrient availability determine the rate of xenobiotic biodegradation. Microb Biotechnol 2022; 15:318-336. [PMID: 34689422 PMCID: PMC8719800 DOI: 10.1111/1751-7915.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Understanding the relative importance of soil microbial diversity, plants and nutrient management is crucial to implement an effective bioremediation approach to xenobiotics-contaminated soils. To date, knowledge on the interactive effects of soil microbiome, plant and nutrient supply on influencing biodegradation potential of soils remains limited. In this study, we evaluated the individual and interactive effects of soil initial bacterial diversity, nutrient amendments (organic and inorganic) and plant presence on the biodegradation rate of pyrene, a polycyclic aromatic hydrocarbon. Initial bacterial diversity had a strong positive impact on soil biodegradation potential, with soil harbouring higher bacterial diversity showing ~ 2 times higher degradation rates than soils with lower bacterial diversity. Both organic and inorganic nutrient amendments consistently improved the degradation rate in lower diversity soils and had negative (inorganic) to neutral (organic) effect in higher diversity soils. Interestingly, plant presence/type did not show any significant effect on the degradation rate in most of the treatments. Structural equation modelling demonstrated that initial bacterial diversity had a prominent role in driving pyrene biodegradation rates. We provide novel evidence that suggests that soil initial microbial diversity, and nutrient amendments should be explicitly considered in the design and employment of bioremediation management strategies for restoring natural habitats disturbed by organic pollutants.
Collapse
Affiliation(s)
- Ramesha H. Jayaramaiah
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - Eleonora Egidi
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
| | - Catriona A. Macdonald
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - Jun‐Tao Wang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
| | - Thomas C. Jeffries
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental RemediationThe University of NewcastleCallaghanNSW2308Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
| |
Collapse
|
8
|
Biodegradation of Total Petroleum Hydrocarbons in Soil: Isolation and Characterization of Bacterial Strains from Oil Contaminated Soil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we isolated seven strains (termed BY1–7) from polluted soil at an oil station and evaluated their abilities to degrade total petroleum hydrocarbons (TPHs). Following 16 rRNA sequence analysis, the strains were identified as belonging to the genera Bacillus, Acinetobacter, Sphingobium, Rhodococcus, and Pseudomonas, respectively. Growth characterization studies indicated that the optimal growth conditions for the majority of the strains was at 30 °C, with a pH value of approximately 7. Under these conditions, the strains showed a high TPH removal efficiency (50%) after incubation in beef extract peptone medium for seven days. Additionally, we investigated the effect of different growth media on growth impact factors that could potentially affect the strains’ biodegradation rates. Our results suggest a potential application for these strains to facilitate the biodegradation of TPH-contaminated soil.
Collapse
|
9
|
Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. CHEMOSPHERE 2020; 247:125932. [PMID: 32069719 DOI: 10.1016/j.chemosphere.2020.125932] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.
Collapse
Affiliation(s)
- Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Israa Abdulwahab Al-Baldawi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Asia Fadhile Almansoory
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Biology, Science College, University of Basrah, Basrah, Iraq
| | - Ipung Fitri Purwanti
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Institut Teknologi Sepuluh Nopember Surabaya, Surabaya, 60111, Indonesia
| | - Nadya Hussin Al-Sbani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Department of Chemical Engineering, Faculty of Petroleum Engineering, AL-Zawia University, AL-Zawia, Libya
| | - Siti Shilatul Najwa Sharuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Oniosun S, Harbottle M, Tripathy S, Cleall P. Plant growth, root distribution and non-aqueous phase liquid phytoremediation at the pore-scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109378. [PMID: 31445373 DOI: 10.1016/j.jenvman.2019.109378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The success of phytoremediation is dependent on the exposure of plants to contaminants, which is controlled by root distribution, physicochemical characteristics, and contaminant behavior in the soil environment. Whilst phytoremediation has been successful in remediating hydrocarbons and other organic contaminants, there is little understanding of the impact of non-aqueous phase liquids (NAPLs) on plant behavior, root architecture and the resulting impact of this on phytoremediation. Light NAPLs (LNAPLs) may be present in pore spaces in the capillary zone as a continuous or semi-continuous phase, or as unconnected ganglia which act as individual contaminant sources. Experimental work with ryegrass (Lolium perenne) grown under hydroponic conditions in idealised pore scale models is presented, exploring how plant growth, root distribution and development, and oil removal are affected through direct physical contact with a model LNAPL (mineral oil). In the presence of low levels of LNAPL, a significant decrease in root length was observed, whilst at higher LNAPL levels root lengths increased due to root diversion and spreading, with evidence of root redistribution in the case of LNAPL contamination across multiple adjacent pores. Changes to root morphology were also observed in the presence of LNAPL with plant roots coarse and crooked compared to long, fine and smooth roots in uncontaminated columns. Root and shoot biomass also appear to be impacted by the LNAPL although the effects are complex, affected by both root diversion and thickening. Substantial levels of LNAPL removal were observed, with roots close to LNAPL sources able to remove dissolved-phase contamination, and root growth through LNAPL sources suggest that direct uptake/degradation is possible.
Collapse
Affiliation(s)
- Sunday Oniosun
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| | - Michael Harbottle
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| | - Snehasis Tripathy
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| | - Peter Cleall
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| |
Collapse
|
11
|
Zhang K, Hu Z, Zeng F, Yang X, Wang J, Jing R, Zhang H, Li Y, Zhang Z. Biodegradation of petroleum hydrocarbons and changes in microbial community structure in sediment under nitrate-, ferric-, sulfate-reducing and methanogenic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109425. [PMID: 31446121 DOI: 10.1016/j.jenvman.2019.109425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the biodegradation behaviors of petroleum hydrocarbons under various reducing conditions were investigated. n-Alkanes and polycyclic aromatic hydrocarbons (PAHs) were degraded with NO3-, Fe3+, SO42-, or HCO3- as terminal electron acceptors (TEAs), which link to four typical reducing conditions (i.e., nitrate-reducing, ferric-reducing, sulfate-reducing and methanogenic conditions, respectively) in sediment. The fastest degradation rates were achieved under sulfate-reducing conditions with half-lives of 49.51 days for n-alkanes and 58.74 days for PAHs. For short-chain n-alkanes and low-molecular weight (LMW) PAHs, relatively higher removal efficiencies were achieved under nitrate- and ferric-reducing conditions. The degradation of long-chain n-alkanes and high-molecular weight (HMW) PAHs coupled to methanogenesis was the most favored as compared with other reducing conditions. Carboxylation was found to be the principle mechanism for regulating n-alkane degradation coupled to denitrification, while the activation of n-alkanes by the addition of fumarate was the principle mechanism for the n-alkane degradation under sulfate-reducing conditions. The anaerobic metabolism of n-alkanes may not proceed via fumarate addition or carboxylation under ferric-reducing and methanogenic conditions. Illumina HiSeq sequencing revealed dissimilar structures of the microbial communities under various reducing conditions. It is hypothesized that the utilization of different TEAs for n-alkane and PAH degradation resulted in distinct microbial community structures, which were highly correlated with the varied degradation behaviors of petroleum hydrocarbons in sediment. The current results may provide reference value on better understanding the biodegradation behaviors of n-alkanes and PAHs in association with the induced microbial communities in sedimentary environments under the four typical reducing conditions.
Collapse
Affiliation(s)
- Kun Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Feifan Zeng
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ran Jing
- Department of Civil and Environmental Engineering, University of Maryland at College Park, MD, 20742, USA
| | - Huanni Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Faustino MV, Faustino MAF, Pinto DCGA. Halophytic Grasses, a New Source of Nutraceuticals? A Review on Their Secondary Metabolites and Biological Activities. Int J Mol Sci 2019; 20:E1067. [PMID: 30823674 PMCID: PMC6429475 DOI: 10.3390/ijms20051067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/02/2022] Open
Abstract
The Poaceae family, known as grasses, is distributed worldwide and is considered the most important group of monocotyledonous crops. Salt stress is multifactorial, therefore to survive, halophytes evolved a variety of adaptations, which include the biosynthesis of different primary and secondary metabolites. This trait enhances the accumulation of important families of compounds crucial to the prevention of a variety of chronic diseases. Besides, if proven edible, these species could cope with the increased soil salinity responsible for the decline of arable land due to their high nutritional/nutraceutical value. Herein, the phytochemical investigations performed in halophytes from the Poaceae family as well as their biological properties were explored. Among the 65 genera and 148 species of known halophytic grasses, only 14% of the taxa were studied phytochemically and 10% were subjected to biological evaluation. Notably, in the studied species, a variety of compound families, as well as bioactivities, were demonstrated, highlighting the potential of halophytic grasses.
Collapse
Affiliation(s)
- Maria V Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Mustapha HI, Gupta PK, Yadav BK, van Bruggen JJA, Lens PNL. Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater. CHEMOSPHERE 2018; 205:166-177. [PMID: 29698827 DOI: 10.1016/j.chemosphere.2018.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
A duplex constructed wetland (duplex-CW) is a hybrid system that combines a vertical flow (VF) CW as a first stage with a horizontal flow filter (HFF) as a second stage for a more efficient wastewater treatment as compared to traditional constructed wetlands. This study evaluated the potential of the hybrid CW system to treat influent wastewater containing diesel range organic compounds varying from C7 - C40 using a series of 12-week practical and numerical experiments under controlled conditions in a greenhouse (pH was kept at 7.0 ± 0.2, temperature between 20 and 23° C and light intensity between 85 and 100-μmol photons m-2 sec-1 for 16 h d-1). The VF CWs were planted with Phragmites australis and were spiked with different concentrations of NH4+-N (10, 30 and 60 mg/L) and PO43--P (3, 6 and 12 mg/L) to analyse their effects on the degradation of the supplied petroleum hydrocarbons. The removal rate of the diesel range organics considering the different NH4+-N and PO43--P concentrations were simulated using Monod degradation kinetics. The simulated results compared well with the observed database. The results showed that the model can effectively be used to predict biochemical transformation and degradation of diesel range organic compounds along with nutrient amendment in duplex constructed wetlands.
Collapse
Affiliation(s)
- Hassana Ibrahim Mustapha
- UNESCO-IHE, P.O. Box 3015, 2601 DA, Delft, The Netherlands; Federal University of Technology, Minna, Department of Agricultural and Bio-resources Engineering, P. M. B. 65, Gidan Kwano. Nigeria.
| | - Pankaj Kumar Gupta
- Indian Institute of Technology Roorkee, Department of Hydrology, Roorkee-247667, Uttarakhand, India
| | - Brijesh Kumar Yadav
- Indian Institute of Technology Roorkee, Department of Hydrology, Roorkee-247667, Uttarakhand, India
| | | | - P N L Lens
- UNESCO-IHE, P.O. Box 3015, 2601 DA, Delft, The Netherlands
| |
Collapse
|
14
|
Zhu H, Gao Y, Li D. Germination of grass species in soil affected by crude oil contamination. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:567-573. [PMID: 29688053 DOI: 10.1080/15226514.2017.1405376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many grass species exist in the oil exploration areas of North Dakota. The objective of this study was to evaluate seed germination of 65 grass species affected by crude oil. Germination of all species was reduced by crude oil, ranging from 4.3 to 100%. Twenty-eight species were tolerant, 29 moderately tolerant, 6 moderately sensitive, and 2 sensitive. Based on the tolerance levels, the following were used to further test the dose response to crude oil: strong creeping red fescue (Festuca rubra L. ssp. rubra), perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata L.), buffalograss [Buchloe dactyloides (Nutt.) Engelm.], little bluestem [Schizachyrium scoparium (Michx.) Nash], witchgrass (Panicum capillare L.), sand dropseed [Sporobolus cryptandrus (Torr.) Gray], Johnsongrass [Sorghum halepense (L.) Pers.], and smooth crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.]. The EC50 of germination and biomass was effective in ranking the 9 species. Buffalograss, sand dropseed, and orchardgrass were ranked as the most tolerant species with EC50 values of 0.1, > highest concentration tested, 0.05 m3 m-3 (P < 0.05), respectively. Smooth crabgrass and little bluestem were ranked as most sensitive with EC50 values of 0.03 and 0.04 m3 m-3 (P < 0.05), respectively. Buffalograss showed the lowest germination (10.4%) and biomass reduction (25%) (P < 0.05).
Collapse
Affiliation(s)
- Huisen Zhu
- a College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu , Shanxi , China
| | - Yang Gao
- b Department of Plant Sciences , North Dakota State University , Fargo , ND , USA
| | - Deying Li
- b Department of Plant Sciences , North Dakota State University , Fargo , ND , USA
| |
Collapse
|