1
|
Mazzon M, Bozzi Cionci N, Buscaroli E, Alberoni D, Baffoni L, Di Gioia D, Marzadori C, Barbanti L, Toscano A, Braschi I. Pot experimental trial for assessing the role of different composts on decontamination and reclamation of a polluted soil from an illegal dump site in Southern Italy using Brassica juncea and Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2640-2656. [PMID: 38066270 PMCID: PMC10791941 DOI: 10.1007/s11356-023-31256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
A pot experiment was carried out to evaluate the remediation potential of Brassica juncea and Sorghum bicolor in the decontamination of soil polluted with heavy metals such as copper, lead, tin, and zinc along with polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy hydrocarbons. Two composts obtained from different composting processes were tested as biostimulating agents. At the end of the trial, the effect of plant/compost combinations on soil microbial composition, contaminant removal, biochemical indicators, and plant biomass production was determined. The results highlighted that compost addition improved plant biomass despite slowing down plants' removal of organic and inorganic contaminants. In addition, compost partially enhanced the soil biochemical indicators and modified the relative abundance of the rhizosphere microorganisms. Sorghum showed better mitigation performance than Brassica due to its higher growth. The soil fertility level, the choice of plant species, and microbial richness were found fundamental to perform soil remediation. In contrast, compost was relevant for a higher crop biomass yield.
Collapse
Affiliation(s)
- Martina Mazzon
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Enrico Buscaroli
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy.
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Claudio Marzadori
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Attilio Toscano
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Ilaria Braschi
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| |
Collapse
|
2
|
Maucourt F, Cébron A, Budzinski H, Le Menach K, Peluhet L, Czarnes S, Melayah D, Chapulliot D, Vallon L, Plassart G, Hugoni M, Fraissinet-Tachet L. Prokaryotic, Microeukaryotic, and Fungal Composition in a Long-Term Polychlorinated Biphenyl-Contaminated Brownfield. MICROBIAL ECOLOGY 2023; 86:1696-1708. [PMID: 36646913 DOI: 10.1007/s00248-022-02161-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) are recognized as persistent organic pollutants and accumulate in organisms, soils, waters, and sediments, causing major health and ecological perturbations. Literature reported PCB bio-transformation by fungi and bacteria in vitro, but data about the in situ impact of those compounds on microbial communities remained scarce while being useful to guide biotransformation assays. The present work investigated for the first time microbial diversity from the three-domains-of-life in a long-term contaminated brownfield (a former factory land). Soil samples were ranked according to their PCB concentrations, and a significant increase in abundance was shown according to increased concentrations. Microbial communities structure showed a segregation from the least to the most PCB-polluted samples. Among the identified microorganisms, Bacteria belonging to Gammaproteobacteria class, as well as Fungi affiliated to Saccharomycetes class or Pleurotaceae family, including some species known to transform some PCBs were abundantly retrieved in the highly polluted soil samples.
Collapse
Affiliation(s)
- Flavien Maucourt
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
- ENVISOL, 2-4 Rue Hector Berlioz, 38110, La Tour du Pin, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | | | | | | | - Sonia Czarnes
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Delphine Melayah
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
- Univ Lyon, INSA Lyon, CNRS, UMR 5240 Microbiologie Adaptation Et Pathogénie, 69621, Villeurbanne, France
| | - David Chapulliot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Laurent Vallon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Gaël Plassart
- ENVISOL, 2-4 Rue Hector Berlioz, 38110, La Tour du Pin, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
- Univ Lyon, INSA Lyon, CNRS, UMR 5240 Microbiologie Adaptation Et Pathogénie, 69621, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Laurence Fraissinet-Tachet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|
3
|
Zhou H, Yin H, Guo Z, Zhu M, Qi X, Dang Z. Methanol promotes the biodegradation of 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB 180) by the microbial consortium QY2: Metabolic pathways, toxicity evaluation and community response. CHEMOSPHERE 2023; 322:138206. [PMID: 36828105 DOI: 10.1016/j.chemosphere.2023.138206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As one of the most frequently detected PCB congeners in human adipose tissue, 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB 180) has attracted much attention. However, PCB 180 is difficult to be directly utilized by microorganisms due to its hydrophobicity and obstinacy. Herein, methanol (5 mM) as a co-metabolic carbon source significantly stimulated the degradation performance of microbial consortium QY2 for PCB 180 (51.9% higher than that without methanol addition). Six metabolic products including low-chlorinated PCBs and chlorobenzoic acid were identified during co-metabolic degradation, denoting that PCB 180 was metabolized via dechlorination, hydroxylation and ring-opening pathways. The oxidative stress and apoptosis induced by PCB 180 were dose-dependent, but the addition of methanol effectively promoted the tolerance of consortium QY2 to resist unfavorable environmental stress. Additionally, the significant reduction of intracellular reactive oxygen species (ROS) and enhancement of cell viability during methanol co-metabolic degradation proved that the degradation was a detoxification process. The microbial community and network analyses suggested that the potential PCB 180 degrading bacteria in the community (e.g., Achromobacter, Cupriavidus, Methylobacterium and Sphingomonas) and functional abundance of metabolic pathways were selectively enriched by methanol, and the synergies among species whose richness increased after methanol addition might dominate the degradation process. These findings provide new insights into the biodegradation of PCB 180 by microbial consortium.
Collapse
Affiliation(s)
- Heyang Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| | - Zhanyu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| |
Collapse
|
4
|
de Souza DM, da Silva JDL, Ludwig LDC, Petersen BC, Brehm FA, Modolo RCE, De Marchi TC, Figueiredo R, Moraes CAM. Study of the phytoremediation potential of native plant species identified in an area contaminated by volatile organic compounds: a systematic review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1524-1541. [PMID: 36708140 DOI: 10.1080/15226514.2023.2170974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phytoremediation is a process that uses plants in situ to promote remediation of environments contaminated by organic or inorganic compounds. Phytoremediating species develop methods such as phytoextraction, rhizofiltration, phytodegradation, and phytovolatilization, which can manifest themselves individually or together in a single plant. This study aims to evaluate, through a systematic review, the potential phytoremediation techniques of the genera Syagrus (Mart.), Nephrolepis, Cyperus (L.), Mimosa (L.), Schinus (L.), Brachiaria, and Eryngium (L.) found in a humid area of Rio Grande do Sul, Brazil. The genera that presented significant numbers in the databases consulted were Cyperus and Brachiaria, followed by Nephrolepis. The first two are considered the most promising for phytoremediation processes. The other genera mentioned obtained favorable results for organic contaminants. The studies around these genera are still recent. It is necessary, in research, to highlight which phytoremediation processes the plants exert in relation to the contaminant of the place. In addition, priority should be given to native species that can establish themselves in the environment and that would not unbalance and harm the surrounding biota and ecosystem.
Collapse
Affiliation(s)
- Débora M de Souza
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
| | | | | | - Brunna C Petersen
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
| | - Feliciane A Brehm
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
| | - Regina C Espinosa Modolo
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
- Graduate Program in Mechanical Engineering - PPGEM, Unisinos, São Leopoldo, Brazil
| | | | - Rodrigo Figueiredo
- Environmental Engineer and Work Safety Engineer, NewFields Brazil Environmental Consulting Ltd, Novo Hamburgo, Brazil
| | - Carlos A M Moraes
- Graduate Program in Civil Engineering - PPGEC, Universidade do Vale do Rio dos Sinos, São Leopoldo (Unisinos), Brazil
- Graduate Program in Mechanical Engineering - PPGEM, Unisinos, São Leopoldo, Brazil
| |
Collapse
|
5
|
Modeling the Carbon Sequestration Potential of Multifunctional Agroforestry-Based Phytoremediation (MAP) Systems in Chinandega, Nicaragua. SUSTAINABILITY 2022. [DOI: 10.3390/su14094932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Global sustainability challenges associated with increasing resource demands from a growing population call for resource-efficient land-use strategies that address multiple sustainability issues. Multifunctional agroforestry-based phytoremediation (MAP) is one such strategy that can simultaneously capture carbon, decontaminate soils, and provide diverse incomes for local farmers. Chinandega, Nicaragua, is a densely populated agricultural region with heavily polluted soils. Four different MAP systems scenarios relevant to Chinandega were created and carbon sequestration potentials were calculated using CO2FIX. All scenarios showed the potential to store significantly more carbon than conventional farming practices, ranging from 2.5 to 8.0 Mg CO2eq ha−1 yr−1. Overall, carbon sequestration in crops is relatively small, but results in increased soil organic carbon (SOC), especially in perennials, and the combination of crops and trees provide higher carbon sequestration rates than monoculture. Changes in SOC are crucial for long-term carbon sequestration, here ranging between 0.4 and 0.9 Mg C ha−1 yr−1, with the most given in scenario 4, an alley cropping system with pollarded trees with prunings used as green mulch. The adoption rate of multifunctional strategies providing both commodity and non-commodity outputs, such as carbon sequestration, would likely increase if phytoremediation is included. Well-designed MAP systems could help reduce land-use conflicts, provide healthier soil, act as climate change mitigation, and have positive impacts on local health and economies.
Collapse
|
6
|
Halfadji A, Portet-Koltalo F, Touabet A, Le Derf F, Morin C, Merlet-Machour N. Phytoremediation of PCB: contaminated Algerian soils using native agronomics plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:117-132. [PMID: 34355306 DOI: 10.1007/s10653-021-01049-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Pot cultivation experiments were conducted to assess the phytoremediation potential of two local agronomic plants, namely Avena sativa and Vicia sativa. Several soils with long-standing contamination and different levels of Polychlorinated biphenyl (PCB) contamination were used for this study. The soil samples came from different regions of Algeria and had different physico-chemical parameters. We studied the influence of these parameters on remediation potential of the two tested plants. The removal rate of the seven PCBs (PCB 28, 52, 101, 138, 153, 156 and 180) was examined after 40 and 90 days. The results showed that the presence of the plants reduced significantly the overall PCB content, ranging initially from 1.33-127.9 mg kg1. After 90 days, the forage plant Vicia sativa allowed us to reach an excess dissipation rate of 56.7% compared to the unplanted control for the most polluted soil. An average dissipation rate of 50% was obtained in the moderately polluted soil. The less contaminated soil had an excess dissipation rate of about 24% for both plants and a predominant dissipation of the low chlorinated PCBs.
Collapse
Affiliation(s)
- Ahmed Halfadji
- Department of Sciences and Technology, Faculty of Applied Science, University Ibn-Khaldoun Tiaret, BP 78 P zaâroura 14000, Tiaret, Algeria
- UNIROUEN, Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, 55 rue St Germain, 27000, Evreux, France
- Laboratory of Organic Analysis Functional (LAOF), Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Florence Portet-Koltalo
- UNIROUEN, Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, 55 rue St Germain, 27000, Evreux, France
| | - Abdelkrim Touabet
- Department of Sciences and Technology, Faculty of Applied Science, University Ibn-Khaldoun Tiaret, BP 78 P zaâroura 14000, Tiaret, Algeria
| | - Franck Le Derf
- UNIROUEN, Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, 55 rue St Germain, 27000, Evreux, France
| | - Christophe Morin
- UNIROUEN, Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, 55 rue St Germain, 27000, Evreux, France
| | - Nadine Merlet-Machour
- UNIROUEN, Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis COBRA UMR CNRS 6014, IUT Evreux, 55 rue St Germain, 27000, Evreux, France.
| |
Collapse
|
7
|
Valizadeh S, Lee SS, Baek K, Choi YJ, Jeon BH, Rhee GH, Andrew Lin KY, Park YK. Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. ENVIRONMENTAL RESEARCH 2021; 200:111757. [PMID: 34303678 DOI: 10.1016/j.envres.2021.111757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are hazardous organic contaminants threatening human health and environmental safety due to their toxicity and carcinogenicity. Biochar (BC) is an eco-friendly carbonaceous material that can extensively be utilized for the remediation of PCBs-contaminated soils. In the last decade, many studies reported that BC is beneficial for soil quality enhancement and agricultural productivity based on its physicochemical characteristics. In this review, the potential of BC application in PCBs-contaminated soils is elaborated as biological strategies (e.g., bioremediation and phytoremediation) and specific mechanisms are also comprehensively demonstrated. Further, the synergy effects of BC application on PCBs-contaminated soils are discussed, in view of eco-friendly, beneficial, and productive aspects.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
8
|
Khalid F, Hashmi MZ, Jamil N, Qadir A, Ali MI. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10474-10487. [PMID: 33411303 DOI: 10.1007/s11356-020-11996-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 05/21/2023]
Abstract
Electronic waste is termed as e-waste and on recycling it produces environmental pollution. Among these e-waste pollutants, polychlorinated biphenyls (PCBs) are significantly important due to ubiquitous, organic in nature and serious health and environmental hazards. PCBs are used in different electrical equipment such as in transformers and capacitors for the purposes of exchange of heat and hydraulic fluids. Bioremediation is a reassuring technology for the elimination of the PCBs from the environment. In spite of their chemical stability, there are several microbes which can bio-transform or mineralize the PCBs aerobically or anaerobically. In this review paper, our objective was to summarize the information regarding PCB-degrading enzymes and microbes. The review suggested that the most proficient PCB degraders during anaerobic condition are Dehalobacter, Dehalococcoides, and Desulfitobacterium and in aerobic condition are Burkholderia, Achromobacter, Comamonas, Ralstonia, Pseudomonas, Bacillus, and Alcaligenes etc., showing the broadest substrate among bacterial strains. Enzymes found in soil such as dehydrogenases and fluorescein diacetate (FDA) esterases have the capability to breakdown PCBs. Biphenyl upper pathway involves four enzymes: dehydrogenase (bphB), multicomponent dioxygenase (bphA, E, F, and G), second dioxygenase (bphC), hydrolase, and (bphD). Biphenyl dioxygenase is considered as the foremost enzyme used for aerobic degradation of PCBs in metabolic pathway. It has been proved that several micro-organisms are responsible for the PCB metabolization. The review provides novel strategies for e-waste-contaminated soil management.
Collapse
Affiliation(s)
- Foqia Khalid
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaffar Hashmi
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 44000, Pakistan.
- Pakistan Academy of Science, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.
| | - Nadia Jamil
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
9
|
Combined Effects of Compost and Medicago Sativa in Recovery a PCB Contaminated Soil. WATER 2020. [DOI: 10.3390/w12030860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effectiveness of adding compost and the plant Medicago sativa in improving the quality of a soil historically contaminated by polychlorinated biphenyls (PCBs) was tested in greenhouse microcosms. Plant pots, containing soil samples from an area contaminated by PCBs, were treated with the compost and the plant, separately or together. Moreover, un-treated and un-planted microcosms were used as controls. At fixed times (1, 133 and 224 days), PCBs were analysed and the structure (cell abundance, phylogenetic characterization) and functioning (cell viability, dehydrogenase activity) of the natural microbial community were also measured. The results showed the effectiveness of the compost and plant in increasing the microbial activity, cell viability, and bacteria/fungi ratio, and in decreasing the amount of higher-chlorinated PCBs. Moreover, a higher number of α-Proteobacteria, one of the main bacterial groups involved in the degradation of PCBs, was found in the compost and plant co-presence.
Collapse
|