1
|
Lupp RM, Marques DN, Lima Nogueira M, Carvalho MEA, Azevedo RA, Piotto FA. Cadmium tolerance in tomato: determination of organ-specific contribution by diallel analysis using reciprocal grafts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:215-227. [PMID: 38049693 DOI: 10.1007/s11356-023-31230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Given the increasing problems of water and soil contamination with cadmium (Cd), it is necessary to investigate the genetic and physiological mechanisms of tolerance to this metal in different crops, which can be used for the development of effective crop management strategies. This study aimed to assess the potential of grafting as a strategy to increase Cd tolerance and reduce absorption in tomato by evaluating the contribution of the root system and aerial parts for tolerance mechanisms. To this end, reciprocal grafting and diallel analyses were used to examine the combining ability of contrasting tomato genotypes under exposure to 0 and 35 µM CdCl2. Roots and above-ground parts were found to have specific mechanisms of Cd tolerance, absorption, and accumulation. Grafting of the USP15 genotype (scion) on USP16 (rootstock) provided the greatest synergism, increasing the tolerance index and reducing the translocation index and Cd accumulation in leaves. USP163 exhibited potential for breeding programs that target genotypes with high Cd tolerance. In tomato, both Cd tolerance and accumulation in aerial parts are genotype- and tissue-specific, controlled by a complex system of complementary mechanisms that need to be better understood to support the development of strategies to reduce Cd contamination in aerial parts.
Collapse
Affiliation(s)
- Renata Mota Lupp
- Crop Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Deyvid Novaes Marques
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Marina Lima Nogueira
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Ricardo Antunes Azevedo
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando Angelo Piotto
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
2
|
Marques DN, Nogueira ML, Gaziola SA, Batagin-Piotto KD, Freitas NC, Alcantara BK, Paiva LV, Mason C, Piotto FA, Azevedo RA. New insights into cadmium tolerance and accumulation in tomato: Dissecting root and shoot responses using cross-genotype grafting. ENVIRONMENTAL RESEARCH 2023; 216:114577. [PMID: 36252830 DOI: 10.1016/j.envres.2022.114577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 μM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 μg g-1 DW) and S/T (235.61 μg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil.
| | - Marina Lima Nogueira
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | | | - Natália Chagas Freitas
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | - Luciano Vilela Paiva
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Chase Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Fernando Angelo Piotto
- Department of Crop Science, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Hu R, Li Q, Huang Y, Zhao Y, Xiao L, Jing Q, Zou Y, Lin L. Intercropping with post-grafting generation of Solanum photeinocarpum decreases cadmium accumulation in soybean ( Glycine max). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1124-1131. [PMID: 33528274 DOI: 10.1080/15226514.2021.1880366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A pot experiment was designed to explore the effects of different post-grafting generations of Solanum photeinocarpum Nakamura et Odashima intercropping on growth and cadmium (Cd) accumulation in soybeans (varieties: "Zaodou" and "Liaoxian"). Post generation of S. photeinocarpum (ungrafted, grafted on eggplant, potato, and tomato, respectively) were utilized to intercrop with two varieties of soybean in Cd-contaminated soil. Soybean monoculture was employed as a control. Consequently, intercropping with different post-grafting S. photeinocarpum generation, except for tomato rootstock grafts post-generation, could reduce soybean biomass and photosynthetic pigment content. Additionally, all S. photeinocarpum post-grafting generations had the capacity to reduce Cd content in soybean when intercropping, while tomato rootstock grafts post-generation exhibited an adequate ability to accumulate Cd in S. photeinocarpum compared to the ungrafted treatment. In particular, tomato rootstock grafts post-generation could effectively decrease Cd content in soybean organs by 14.09-62.13%, relative to soybean monoculture, but increased shoot Cd content and shoot Cd extraction of S. photeinocarpum by 10.33-13.49% and 10.38-12.03%, respectively, compared to the ungrafted treatment. Thus, tomato rootstock grafting may enhance the ability of post-grafting generation of S. photeinocarpum to remediate Cd-contaminated soil, and this grafting was able to reduce Cd accumulation in soybean.
Collapse
Affiliation(s)
- Rongping Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- MOA Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qinyuan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ling Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qianhe Jing
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Wang X, Li H, Liu Y, Cui T, Liao M, Lin L, Wang Z, Deng H, Liang D, Xia H, Tang Y. Mowing enhances the phytoremediation ability of cadmium-contaminated soil in the post-grafting generations of potential cadmium-hyperaccumulator Solanum photeinocarpum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:652-657. [PMID: 33197328 DOI: 10.1080/15226514.2020.1847036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study aimed at accessing the effects of mowing on the growth and cadmium (Cd) accumulation of the first post-grafting generation of potential Cd-hyperaccumulator plant Solanum photeinocarpum through the pot and plot experiments. Four grafting treatments were employed such as ungrafted (UG), self-rooted grafting by the same S. photeinocarpum seedling (SG), self-rooted grafting by two different development stages of S. photeinocarpum seedlings (DG), and grafting on the rootstock of wild potato (PG). The biomass, Cd content, and Cd extraction amount of S. photeinocarpum shoots significantly decreased with the increase of mowing times in the pot and plot experiments. The order of the grafting on the biomass, Cd content, and Cd extraction amountof in the first, second, third mowing shoots were PG > DG > SG > UG. For the Cd extraction amountof total moving shoots, SG, DG, and PG increased by 20.42%, 35.54%, and 52.94%, respectively, in the pot experiment, and increased by 11.56%, 26.28%, and 44.90%, respectively, in the plot experiment, compared with the UG. Therefore, mowing provides an insight into the phytoremediation ability of S. photeinocarpum to Cd.
Collapse
Affiliation(s)
- Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hongyan Li
- Chongqing Academy of Forestry Sciences, Chongqing, China
| | - Yujia Liu
- College of Horticulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Tonghao Cui
- College of Horticulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Sichuan, Chengdu, China
| |
Collapse
|
5
|
Lin L, Sun J, Cui T, Zhou X, Liao M, Huan Y, Yang L, Wu C, Xia X, Wang Y, Li Z, Zhu J, Wang Z. Selenium accumulation characteristics of Cyphomandra betacea ( Solanum betaceum) seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1375-1383. [PMID: 32647455 PMCID: PMC7326803 DOI: 10.1007/s12298-020-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/23/2020] [Accepted: 06/12/2020] [Indexed: 05/13/2023]
Abstract
A pot experiment was conducted to study the selenium (Se) accumulation characteristics and the tolerance of Cyphomandra betacea (Solanum betaceum) seedlings under different soil Se concentrations. The 5 mg/kg soil Se concentration increased the C. betacea seedling biomass and photosynthetic pigment contents (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), whereas the other soil Se concentrations (10, 25, and 50 mg/kg) inhibited seedling growth. Increases in the soil Se concentrations tended to decrease the superoxide dismutase activity and soluble protein content, but had the opposite effect on the peroxidase and catalase activities. The 5, 10, and 25 mg/kg soil Se concentrations decreased the DNA methylation levels of C. betacea seedlings because of an increase in demethylation patterns (versus 0 mg/kg), whereas the 50 mg/kg soil Se concentration increased the DNA methylation levels because of an increase in hypermethylation patterns (versus 0 mg/kg). Increases in the soil Se concentrations were accompanied by an increasing trend in the Se content of C. betacea seedlings. Moreover, the amount of Se extracted by the shoots was highest for the 25 mg/kg soil Se concentration. Therefore, C. betacea may be able to accumulate relatively large amounts of Se and its growth may be promoted in 5 mg/kg soil Se.
Collapse
Affiliation(s)
- Linjin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jing Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Tonghao Cui
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiong Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Ming’an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yunmin Huan
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Liu Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Caifang Wu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xianmin Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yuxi Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Zhiyu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jinpeng Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
6
|
Huang K, Yang L, Liu Q, Lin L, Liao M, Deng Q, Liang D, Xia H, Wang X, Wang J, Lv X, Tang Y. Effects of reciprocal grafting on cadmium accumulation in post-grafting generations of two ecotypes of Solanum photeinocarpum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1338-1347. [PMID: 32524826 DOI: 10.1080/15226514.2020.1774738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Farmland and mining ecotypes of the potential cadmium (Cd)-hyperaccumulator Solanum photeinocarpum were collected to study the effects of reciprocal grafting on the growth of, and Cd accumulation in, the post-grafting generations. The post generations of the following plant materials were evaluated in a pot experiment: the un-grafted farmland ecotype, grafted plants with the farmland ecotype as the scion or the rootstock, the un-grafted mining ecotype, and grafted plants with the mining ecotype as the scion or the rootstock. The results showed that reciprocal grafting increased the biomass, the activities of superoxide dismutase, peroxidase, and catalase, and the soluble protein content in the post-grafting generations of both ecotypes S. photeinocarpum. Reciprocal grafting also increased the Cd content in, and amount of Cd extracted by, the post-grafting generations of both ecotypes S. photeinocarpum as a result of lower soil pH and higher soil available Cd concentrations. Additionally, grafting affected the DNA methylation levels by inducing hypermethylation or demethylation in the post-grafting generation. Therefore, reciprocal grafting can enhance the Cd accumulation (phytoremediation) capacity of post-grafting generations of both ecotypes S. photeinocarpum by affecting DNA methylation levels.
Collapse
Affiliation(s)
- Kewen Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Liu Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qin Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Wu C, Huan Y, Yang L, Lin L, Liao M, Wang J, Wang Z, Liang D, Xia H, Tang Y, Lv X, Wang X. Effects of intercropping with two Solanum species on the growth and cadmium accumulation of Cyphomandra betacea seedlings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1242-1248. [PMID: 32393060 DOI: 10.1080/15226514.2020.1759505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The contamination of orchard by cadmium (Cd) has recently increased in severity. To decrease the Cd content in fruit tree, a pot-based experiment was conducted to study the effects of intercropping with two Solanum species (Solanum alatum and Solanum diphyllum) on the growth and Cd accumulation of Cyphomandra betacea seedlings. The data revealed that intercropping with two Solanum species significantly increased the biomass, photosynthetic pigment contents, antioxidant enzyme activities, and soluble protein contents of C. betacea seedlings under Cd stress condition. The intercropping significantly decreased the Cd content in C. betacea seedlings. However, the intercropping significantly decreased the S. alatum and S. diphyllum biomasses, while increased the Cd content and accumulation in the roots and shoots of two Solanum species, and the Cd uptake by S. alatum was lower than that of S. diphyllum. Therefore, intercropping with these two Solanum species, especially S. diphyllum, may promote the growth and decrease the Cd content in C. betacea.
Collapse
Affiliation(s)
- Caifang Wu
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunmin Huan
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Liu Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Li H, Wang J, Lin L, Liao M, Lv X, Tang Y, Wang X, Xia H, Liang D, Ren W, Jiang W. Effects of mutual grafting on cadmium accumulation characteristics of first post-generations of Bidens pilosa L. and Galinsoga parviflora Cav. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33228-33235. [PMID: 31520390 DOI: 10.1007/s11356-019-06498-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
We studied the effects of mutual grafting on cadmium (Cd) accumulation characteristics on the first post-generations of the Cd-hyperaccumulator plants Bidens pilosa L. and Galinsoga parviflora Cav. The seeds from scions and rootstocks of B. pilosa and G. parviflora were collected and planted in Cd-contaminated soil in pot and field experiments. In the pot experiment, rootstock treatment increased the shoot biomass of B. pilosa post-grafting generations, compared with ungrafted B. pilosa, but decreased the Cd content in shoots and Cd extraction by shoots of post-grafting generations; scion treatment decreased or had no significant effect. Mutual grafting resulted in no significant differences to the photosynthetic pigment contents in B. pilosa post-grafting generations. Compared with ungrafted G. parviflora, scion treatment increased the shoot biomass, photosynthetic pigment content, and Cd extraction by shoots of G. parviflora post-grafting generations, but rootstock treatment did not lead to significant differences. Mutual grafting resulted in no significant differences to the Cd contents in shoots of G. parviflora post-grafting generations. In the field experiment, only rootstock treatment increased the shoot biomass of B. pilosa post-grafting generations, and only scion treatment increased the shoot biomass and the Cd extraction by shoots of G. parviflora post-grafting generations. Therefore, mutual grafting of scions may enhance the phytoremediation ability of G. parviflora first post-grafting generations.
Collapse
Affiliation(s)
- Hongyan Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Ren
- Maize Research Institute, Neijiang Academy of Agricultural Sciences, Neijiang, 641000, China
| | - Wei Jiang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Wang J, Yao H, Lin L, Tang Y, Liang D, Xia H, Lv X, Liao M, Sun G, Li H, Wang X, Ren W. Effects of self-rooted grafting on growth and cadmium accumulation in post-grafting generations of soybean (Glycine max). ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:609. [PMID: 31486904 DOI: 10.1007/s10661-019-7787-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
A study was performed to determine whether self-rooted grafting decreases cadmium (Cd) accumulation in post-grafting soybean (Glycine max (Linn.) Merrill) generations. Pot experiments were performed using ungrafted (UG) seedlings, self-rooted grafting from the same soybean seedling (SG), self-rooted grafting from two soybean seedlings at the same growth stage (TG), and self-rooted grafting from two soybean seedlings at different developmental stages (DG). Growth and Cd accumulation in three post-grafting soybean generations were assessed. In the SG treatment, only the second post-grafting generation had increased shoot biomass and only the first post-grafting generation shoots had decreased Cd contents. The seed Cd content, soluble protein content, and antioxidant enzyme activity were not significantly affected in three post-grafting generations. In the TG and DG treatments, shoot biomass, soluble protein content, and antioxidant enzyme activities were increased, and the shoot and seed Cd contents were decreased in three post-grafting generations. The seed Cd contents in the first, second, and third post-grafting generations were 15.00%, 9.46%, and 12.44%, respectively, lower in the TG than UG treatments. The seed Cd contents in the first, second, and third post-grafting generations were 32.73%, 27.03%, and 32.22%, respectively, lower in the DG than UG treatments. Different grafting methods promoted growth and decreased Cd accumulation to different degrees in three post-grafting generations. Grafting seedlings at different developmental stages had the strongest effects.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huan Yao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huanxiu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Ren
- Maize Research Institute, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| |
Collapse
|
10
|
Xia H, Wang Y, Liao M, Lin L, Zhang F, Tang Y, Zhang H, Wang J, Liang D, Deng Q, Lv X, Chen C, Ren W. Effects of different rootstocks on cadmium accumulation characteristics of the post-grafting generations of Galinsoga parviflora. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:62-68. [PMID: 31321987 DOI: 10.1080/15226514.2019.1644287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A pot experiment was conducted to study the effects of different rootstocks on the cadmium (Cd) accumulation characteristics of the post-grafting generations of Cd-hyperaccumulator Galinsoga parviflora plants. Five treatments, ungrafted and G. parviflora seedlings grafted on the rootstocks of Kalimeris indica, Senecio scandens, Conyza canadensis, and Artemisia sieversiana, were utilized. The four rootstock grafts decreased the shoot biomass of the G. parviflora post-grafting generation compared with ungrafted. The K. indica and S. scandens grafts increased the Cd concentration in shoots of the G. parviflora post-grafting generation by 15.06% and 14.40%, respectively, compared with ungrafted, while the C. canadensis and A. sieversiana grafts had no significant effects. K. indica grafts increased the amount of Cd extracted by shoots of the G. parviflora post-grafting generation by 10.59% compared with ungrafted, while the other treatments resulted in decreases. Compared with ungrafted, the different rootstocks had no significant effects on the photosynthetic pigment content of the G. parviflora post-grafting generation, and only C. canadensis grafts increased the superoxide dismutase activity level, while only K. indica grafts increased the peroxidase activity level. Therefore, the K. indica rootstock could increase the phytoremediation capability of G. parviflora post-grafted plants grown in Cd-contaminated soil.
Collapse
Affiliation(s)
- Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ya'nan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ming'an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fenqin Zhang
- College of Agriculture and Biological Technology, Hexi University, Zhangye, Gansu, China
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huifen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Cheng Chen
- College of Economics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Ren
- Maize Research Institute, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| |
Collapse
|