1
|
Aryal M. Phytoremediation strategies for mitigating environmental toxicants. Heliyon 2024; 10:e38683. [PMID: 39430524 PMCID: PMC11490803 DOI: 10.1016/j.heliyon.2024.e38683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In natural environments, persistent pollutants such as heavy metals and organic compounds, are frequently sequestered in sediments, soils, and mineral deposits, rendering them biologically unavailable. This study examines phytoremediation, a sustainable technology that uses plants to remove pollutants from soil, water, and air. It discusses enhancing techniques such as plant selection, the use of plant growth-promoting bacteria, soil amendments, and genetic engineering. The study highlights the slow removal rates and the limited availability of plant species that are effective for specific pollutants. Furthermore, it investigates bioavailability and the mechanisms underlying root exudation and hyperaccumulation. Applications across diverse environments and innovative technologies, such as transgenic plants and nanoparticles, are also explored. Additionally, the potential for phytoremediation with bioenergy production is considered. The purpose of this study is to provide researchers, practitioners, and policymakers with valuable resources for sustainable solutions.
Collapse
Affiliation(s)
- Mahendra Aryal
- Department of Chemistry, Tribhuvan University, Tri-Chandra Campus, Kathmandu, 44600, Nepal
| |
Collapse
|
2
|
Kumar Issac P, Ravindiran G, Velumani K, Jayaseelan A, Greff B, Mani R, Woong Chang S, Ravindran B, Kumar Awasthi M. Futuristic advancements in phytoremediation of endocrine disruptor Bisphenol A: A step towards sustainable pollutant degradation for rehabilitated environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:216-233. [PMID: 38489980 DOI: 10.1016/j.wasman.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species-mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green-biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Gokulam Ravindiran
- Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad 500090, Telengana, India
| | - Kadhirmathiyan Velumani
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Arun Jayaseelan
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Babett Greff
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Lucsony street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, South Korea.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
3
|
Medykowska M, Wiśniewska M, Chibowski S. Fly Ash-Based Na-X Zeolite Application in Separation Process of Bovine Serum Albumin from Aqueous Solution in the Presence of Organic Substances with Anionic Character. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5201. [PMID: 37512475 PMCID: PMC10383924 DOI: 10.3390/ma16145201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The main purpose of the investigations was to explore the protein adsorption on porous materials, as well as to identify the mechanisms of protein attachment without and with other common environmental contaminants, such as drugs, polymers or surfactants. This study applied the Na-X zeolite for the adsorption of bovine serum albumin (BSA) from solutions with various pH values. Electrophoretic mobility measurements and potentiometric titrations were conducted in systems containing both protein and/or PAA (poly(acrylic acid) polymer/DCF (diclofenac) drug/SDS (sodium dodecyl sulfate) surfactant to investigate the protein binding mechanisms in the complex adsorbate systems. In addition, aggregate size and stability measurements were performed in the investigated systems. Based on the research results, it was possible to conclude that the protein adsorbed most preferably on the zeolite surface at a pH value close to its isoelectric point (pI) (102.15 mg/g), and protein adsorption was the lowest in the solutions with strongly alkaline (29.61 mg/g) or acidic (77.45 mg/g) pH values. Thus, the examined zeolitic material can be considered an effective adsorbent for protein removal from an aqueous solution.
Collapse
Affiliation(s)
- Magdalena Medykowska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Stanisław Chibowski
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
4
|
Bajpai S, Nemade PR. An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39494-39536. [PMID: 36787076 DOI: 10.1007/s11356-023-25830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Water hyacinth (WH) has become a considerable concern for people across the globe due to its environmental and socio-economic hazards. Researchers are still trying to control this aquatic weed effectively without other environmental or economic losses. Research on WH focuses on converting this omnipresent excessive biomass into value-added products. The potential use of WH for phytoremediation and utilizing waste biomass in various industries, including agriculture, pharmaceuticals, and bioenergy, has piqued interest. The use of waste WH biomass as a feedstock for producing bioenergy and value-added chemicals has emerged as an eco-friendly step towards the circular economy concept. Here, we have discussed the extraction of bio-actives and cellulose as primary bioproducts, followed by a detailed discussion on different biomass conversion routes to obtain secondary bioproducts. The suggested multi-objective approach will lead to cost-effective and efficient utilization of waste WH biomass. Additionally, the present review includes a discussion of the SWOT analysis for WH biomass and the scope for future studies. An integrated biorefinery scheme is proposed for the holistic utilization of this feedstock in a cascading manner to promote the sustainable and zero-waste circular bio-economy concept.
Collapse
Affiliation(s)
- Shruti Bajpai
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India
| | - Parag R Nemade
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India.
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
5
|
Wareen G, Saeed M, Ilyas N, Asif S, Umair M, Sayyed RZ, Alfarraj S, A Alrasheed W, Awan TH. Comparison of pennywort and hyacinth in the development of membraned sediment plant microbial fuel cell for waste treatment. CHEMOSPHERE 2023; 313:137422. [PMID: 36455655 DOI: 10.1016/j.chemosphere.2022.137422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Membraned Sediment Plant Microbial Fuel cells (SPMFCs) are appealing bioelectrochemical systems that generate power from organic compounds in sediment through exoelectrogen decomposition and are used to treat wastewater. This research was designed to develop a single-chambered sediment plant microbial fuel cell using two membrane electrodes; one carbon plate cathode and one anode. Wastewater and sediment mixture was sampled from Rawalpindi, Pakistan, and bacterial isolation was performed by serial dilution. Five strains were selected on the basis of morphology and growth-promoting characteristics. The selected strains were identified by 16s rRNA sequencing and designated as A (Geobacter sulfurreducens OP527025), B (Shawanella putrefaciens OP522353), C (Bacillus subtilus OP522349), D (Azospirillum humicireducens OP527050) and E (Pseudomonas putida OP526951). Consortium of five strains was developed. Two aquatic plants pennyworts (Hydrocotyle umbellate), and Hyacinth (Eichhornia crassipes) were used in the SPMFCs along with consortium. A maximum voltage of 1120mv was observed in SPMFCs treated with the consortium and water hyacinth, which was followed by 543.3 mv of SPMFCs treated with water pennyworts. Physicochemical analysis of wastewater showed a remarkable reduction of 74.5%, 71%, and 76% in nitrate, phosphate, and sulphate content of wastewater treated with microbes and water hyacinth. The heavy metal analysis showed a reduction of Zn (99.8%), Mg (99.9%), and Ni (98.4%) in SPMFCs treated with the consortium and water hyacinth. Mebraned SPMFCs showed an increase of 30% and 20% in shoot and root length of water hyacinth. A remarkable increase of 25%, 18%, and 12% were recorded in chlorophyll content, membrane stability index and relative water content of water hyacinth in SPMFCs treated with consortium compared to untreated cells. Osmolyte content had shown significant increase of 25% with consortium treated water hyacinth plant as compared to untreated one. An increase of 15%, 20% and 12% was noted in superoxide dismutase (SOD), peroxidase dismutase (POD) and catalase content of consortium treated water hyacinth as compared to control one. The present research gave insight into the potential of sediment plant microbial fuel cells along with aquatic plants for treatment of wastewater. This could be a effective method for removal of hazrdaous substances from wastewater and alternative approach for voltage production.
Collapse
Affiliation(s)
- Gull Wareen
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Maimona Saeed
- Department of Botany, Govt College Women University Sialkot, Pakistan.
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Saira Asif
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Muhammad Umair
- Department of Energy Systems Engineering, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan.
| | - R Z Sayyed
- Asian PGPR Society for Sustainable Agriculture, Auburn Ventures, Auburn, AL, 36849, USA.
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Wafa A Alrasheed
- National Research and Development Center for Sustainable Agriculture (Estidamah), Riyadh Techno Valley, Riyadh, 12373, Saudi Arabia.
| | - Tahir Hussain Awan
- Department of Agronomy, Rice Research Institute, Kala Shah Kaku, Punjab, Pakistan; Project Planning and Programming Unit, Punjab Agricultural Research Board (PARB), Lahore, Punjab, Pakistan
| |
Collapse
|
6
|
Najim AA, Ismail ZZ, Hummadi KK. Immobilization of mixed bacteria by novel biocarriers extracted from Cress and Chia seeds for biotreatment of anionic surfactant (SDS)-bearing real wastewaters. Prep Biochem Biotechnol 2022:1-10. [PMID: 36332156 DOI: 10.1080/10826068.2022.2140354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Selection of biocarrier type is an essential element for successful bacterial cells immobilization. The present investigation aimed to evaluate a novel application of Cress and Chia seeds as biocarriers for immobilization of mixed bacterial cells. Being an environmentally friendly, non-polluting, inexpensive, and non-toxic substances makes them promising biocarriers. On the other hand, there is an increasing concern about contamination by surfactants, sodium dodecyl sulfate (SDS) is among the most commonly used surfactant. The Cress and Chia seeds were cross-linked with PVA to prepare two types of beads; CrE-PVA and ChE-PVA, respectively. The beads were utilized for the SDS biodegradation in four kinds of actual SDS-bearing wastewaters originated from; carwash garage (CWW), laundry facility (LWW), and household detergent industry (HWW), in addition to domestic wastewater (DWW). The results revealed that maximum efficiencies of SDS elimination in DWW, LWW, HWW, and CWW were 98.12, 94.32, 93.04, and 99.08%, respectively, using CrE-PVA and 99.04, 94.96, 94.71, and 99.27%, respectively using ChE-PVA. Finally, both types of beads were recycled for five times without losing their stability and efficiency for SDS biodegradation. Four kinetic models were adopted which were Blackman, Monod, Haldane, and Teissier. Results revealed that Teissier model well fitted the experimental data.
Collapse
Affiliation(s)
- Aya A. Najim
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| | - Zainab Z. Ismail
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| | - Khalid K. Hummadi
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Reclamation of actual automobile wash wastewater combined with energy recovery in 3D- microbial fuel cell packed with acid-activated multi walled carbon nanotubes coated anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Najim AA, Ismail ZZ, Hummadi KK. Biodegradation potential of sodium dodecyl sulphate (SDS) by mixed cells in domestic and non-domestic actual wastewaters: Experimental and kinetic studies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Tiwari B, Singh P, Chakraborty S, Singh SS, Mishra AK. Degrading ability and robust antioxidative defence system led to SDS tolerance in cyanobacterium Fischerella sp. lmga1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:962-968. [PMID: 34693893 DOI: 10.1080/03601234.2021.1992229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To test the tolerance and degradation potential of the cyanobacterium Fischerella sp. lmga1 for surfactant, sodium dodecyl sulfate (SDS), different doses of SDS (10, 30, 40, 50, 70 and 100 µM) were used for the growth. The lower doses of SDS supported the growth of cyanobacterium whereas the higher doses were found to be inhibitory but the cyanobacterium somehow managed its survival up to 100 µM SDS. However, a significant reduction was observed in the pigment and protein content. A substantial accumulation of carbohydrate at 70 µM SDS may act as an osmoprotectant for the survival of the cyanobacterium. The higher doses of SDS also triggered the ROS generation and lipid peroxidation which showed negative impact on the PSII efficiency. Simultaneously, an efficient ROS mitigation system (SOD and CAT activity) has also been worked up to 70 µM SDS while APX was enhanced only up to 50 µM SDS. Furthermore, the SDS degrading potential was investigated and almost 80% of the SDS was degraded after 6th days of treatment in the cyanobacterium. Hence, the results suggested that due to robust antioxidative defence system and ability to degrade the surfactant this cyanobacterium showed significant tolerance toward SDS.
Collapse
Affiliation(s)
- Balkrishna Tiwari
- Genetics and Tree Improvement Division, Himalayan Forest Research Institute, Shimla, India
| | - Prashansha Singh
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Radeef AY, Ismail ZZ. Bioelectrochemical treatment of actual carwash wastewater associated with sustainable energy generation in three-dimensional microbial fuel cell. Bioelectrochemistry 2021; 142:107925. [PMID: 34392137 DOI: 10.1016/j.bioelechem.2021.107925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
Carwash garages are worldwide cleaning facilities. Discharge of their untreated or improperly treated wastewaters highly contributes to the pollution of water resources. Sodium dodecyl sulfate (SDS), a widely used anionic surfactant in the carwash shampoos represents the major constituent of the carwash wastewater. In this study, a new configuration of three-dimensional MFC packed with irregular shaped graphite granules to support and join the plain anodes in the anodic section. The performance of the 3D-MFC was evaluated in two operational modes; continuous and batch. The evaluation was carried out mainly in terms of the removal efficiency of organic content, in particular SDS as well as oil and grease associated with bioenergy generation from actual carwash wastewater used to fuel the MFC. The results demonstrated that maximum removal efficiencies of COD, SDS, and oil and grease were 87%, 88%, and 90%, respectively. Also, the results demonstrated that during the continuous mode operation maximum current density and power output were 1786 mA/m3 and 482 mW/m3, respectively. At batch operation mode, the maximum current density and power output were 1793 mA/m3 and 478 mW/m3, respectively indicating that the performance of the 3D-MFC was comparable in both operation modes.
Collapse
Affiliation(s)
- Ahmed Y Radeef
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| | - Zainab Z Ismail
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
11
|
Wanderley EL, Bianchini I, da Cunha-Santino MB. Surfactant and temperature as forcing functions on the growth of Egeria densa and Chara sp.: a modeling approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26145-26153. [PMID: 33484465 DOI: 10.1007/s11356-021-12456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The wide use of detergents combined with rising water temperature is currently issuing of environmental concern. To evaluate the effect of sodium dodecyl sulfate (SDS) and temperature on macrophyte and talophyte growth, bioassays were conducted with distinct SDS concentrations (0.5 and 8.0 mg L-1) and temperatures (25 and 27 °C). The length of the Egeria densa and Chara sp. and the number and lengths of shoots were measured. Kinetic models were used to verify the temperature and SDS concentrations, as driving factors in the growth. The 2 °C increase in thermal condition interfered positively in both elongation and shoot development in the E. densa growth. For Chara sp., this tendency was not observed for the relative contribution of the shoots, but the number was higher at 25 °C. The higher concentrations of SDS (8.0 mg L-1) reduced the shoots' number and the relative contribution for Chara sp. and E. densa; meanwhile, the decrease in the growth coefficient was observed only for E. densa at 25 °C. In the Chara sp. development, the SDS addition interfered negatively in the growth coefficient. The predicted response of growth models will bring comprehensive knowledge of macrophytes and talophyte metabolism, and the interaction between plant species and forcing functions in modeling approaches will assist in finding the key processes driving plant growth under specific stressors.
Collapse
Affiliation(s)
- Emmanuelle Leite Wanderley
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, 235 km - SP-310, CEP: 13565-905, Sao Carlos, SP, Brasil
| | - Irineu Bianchini
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, 235 km - SP-310, CEP: 13565-905, Sao Carlos, SP, Brasil
- Laboratório de Bioensaios e Modelagem Matemática, Departamento de Hidrobiologia, Universidade Federal de São Carlos, Rodovia Washington Luiz, 235 km - SP-310, CEP: 13565-905, Sao Carlos, SP, Brasil
| | - Marcela Bianchessida da Cunha-Santino
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, 235 km - SP-310, CEP: 13565-905, Sao Carlos, SP, Brasil.
- Laboratório de Bioensaios e Modelagem Matemática, Departamento de Hidrobiologia, Universidade Federal de São Carlos, Rodovia Washington Luiz, 235 km - SP-310, CEP: 13565-905, Sao Carlos, SP, Brasil.
| |
Collapse
|
12
|
Guo J, Li J, Yang X, Wang H, He J, Liu E, Gao X, Chang Y. An environmentally friendly sodium dodecyl sulfate‐synergistic microwave‐assisted extraction followed by ultra‐high‐performance liquid chromatography with photodiode array method for the simultaneous extraction and determination of iridoids, phenylpropanoids, and lignans from
Eucommiae Cortex. J Sep Sci 2020; 43:2971-2980. [DOI: 10.1002/jssc.201901279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/11/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jiading Guo
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- School of PharmacyHarbin University of Commerce Harbin Heilongjiang P. R. China
| | - Hui Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Xiu‐mei Gao
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yan‐xu Chang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical AnalysisTianjin University of Traditional Chinese Medicine Tianjin P. R. China
| |
Collapse
|
13
|
Phytoremediation—From Environment Cleaning to Energy Generation—Current Status and Future Perspectives. ENERGIES 2020. [DOI: 10.3390/en13112905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phytoremediation is a technology based on the use of green plants to remove, relocate, deactivate, or destroy harmful environmental pollutants such as heavy metals, radionuclides, hydrocarbons, and pharmaceuticals. Under the general term of phytoremediation, several processes with distinctively different mechanisms of action are hidden. In this paper, the most popular modes of phytoremediation are described and discussed. A broad but concise review of available literature research with respect to the dominant process mechanism is provided. Moreover, methods of plant biomass utilization after harvesting, with particular regard to possibilities of “bio-ore” processing for metal recovery, or using energy crops as a valuable source for bio-energy production (bio-gas, bio-ethanol, bio-oil) are analyzed. Additionally, obstacles hindering the commercialization of phytoremediation are presented and discussed together with an indication of future research trends.
Collapse
|