1
|
Amaku JF, Taziwa R. Thermodynamics, kinetics and isothermal studies of tartrazine adsorption onto microcline/MWCNTs nanocomposite and the regeneration potentials. Sci Rep 2023; 13:9872. [PMID: 37337056 DOI: 10.1038/s41598-023-37181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023] Open
Abstract
The quest for a cheap, effective, and eco-friendly wastewater treatment technique that is free of secondary toxic byproducts, calls for the fabrication of a nature-friendly adsorbent with a robust capacity to decontaminate polluted water sources and be recycled. To this end, we report the fabrication of novel nanocomposite (KMCM) from microcline (KMC) and multiwall carbon nanotubes (MWCNTs). The adsorbents (KMC and KMCM) were characterized using XRD, BET, SEM, TGA and FTIR. The novel and low-cost nano sorbent were designed for the elimination of tartrazine (Tatz) from wastewater. The adsorption of Tatz onto KMC and KMCM was influenced by adsorbent dose, initial Tatz concentration, contact time and solution pH. Experimental data acquired from the equilibrium studies were well addressed by the Langmuir isotherm model. The maximum uptake capacity of 37.96 mg g-1 and 67.17 mg g-1 were estimated for KMC and KMCM. The kinetics for the adsorption of Tatz onto KMC and KMCM was best expressed by pseudo-second-order and Elovich models. The thermodynamic parameters revealed that the uptake of Tatz onto KMC and KMCM was an endothermic (ΔH: KMC = 35.0 kJ mol-1 and KMCM = 42.91 kJ mol-1), entropy-driven (ΔS: KMC = 177.6 J K-1 mol-1 and KMCM = 214.2 J K-1 mol-1) and spontaneous process. Meanwhile, KMCM demonstrated good reusability potential and superior adsorption efficiency when compared to other adsorbents.
Collapse
Affiliation(s)
- James Friday Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London, 5200, South Africa.
| | - Raymond Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London, 5200, South Africa
| |
Collapse
|
2
|
Jin SR, Cho BG, Mun SB, Kim SJ, Cho CW. Investigation on the adsorption affinity of organic micropollutants on seaweed and its QSAR study. ENVIRONMENTAL RESEARCH 2023:116349. [PMID: 37290627 DOI: 10.1016/j.envres.2023.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Seaweed, one of the most abundant biomaterials, can be used as a biosorbent to remove organic micropollutants. In order to effectively use seaweed to remove a variety of micropollutants, it is vital to rapidly estimate the adsorption affinity according to the types of micropollutants. Thus, the isothermal adsorption affinities of 31 organic micropollutants in neutral or ionic form on seaweed were measured, and a predictive model using quantitative structure-adsorption relationship (QSAR) modeling was developed. As a result, it was found that the types of micropollutants had a significant effect on the adsorption of seaweed, as expected, and QSAR modeling with a predictability (R2) of 0.854 and a standard error (SE) of 0.27 log units using a training set could be developed. The model's predictability was internally and externally validated using leave-one-out cross validation and a test set. Its predictability for the external validation set was R2 = 0.864, SE = 0.171 log units. Using the developed model, we identified the most important driving forces of the adsorption at the molecular level: Coulomb interaction of the anion, molecular volume, and H-bond acceptor and donor, which significantly affect the basic momentum of molecules on the surface of seaweed. Moreover, in silico calculated descriptors were applied to the prediction, and the results revealed reasonable predictability (R2 of 0.944 and SE of 0.17 log units). Our approach provides an understanding of the adsorption process of seaweed for organic micropollutants and an efficient prediction method to estimate the adsorption affinities of seaweed and micropollutants in neutral and ionic forms.
Collapse
Affiliation(s)
- Se-Ra Jin
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Bo-Gyeon Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Se-Been Mun
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea.
| | - Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea; Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186, Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Alginate/Hyphaene thebaica Fruit Shell Biocomposite as Environmentally Friendly and Low-Cost Biosorbent for Heavy Metals Uptake from Aqueous Solution: Batch Equilibrium and Kinetic Studies. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Tattibayeva Z, Tazhibayeva S, Kujawski W, Zayadan B, Musabekov K. Peculiarities of adsorption of Cr (VI) ions on the surface of Chlorella vulgaris ZBS1 algae cells. Heliyon 2022; 8:e10468. [PMID: 36105478 PMCID: PMC9465124 DOI: 10.1016/j.heliyon.2022.e10468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhadra Tattibayeva
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
- Corresponding author.
| | - Sagdat Tazhibayeva
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, 7 Gagarina Street, 87-100, Torun, Poland
| | - Bolatkhan Zayadan
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
| | - Kuanyshbek Musabekov
- Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty, 050040, Kazakhstan
| |
Collapse
|
7
|
Amaku JF, Ogundare S, Akpomie KG, Ibeji CU, Conradie J. Functionalized MWCNTs-quartzite nanocomposite coated with Dacryodes edulis stem bark extract for the attenuation of hexavalent chromium. Sci Rep 2021; 11:12684. [PMID: 34135431 PMCID: PMC8208999 DOI: 10.1038/s41598-021-92266-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Multiwalled carbon nanotubes/quartzite nanocomposite modified with the extract of Dacryodes edulis leaves was synthesized and designated as Q, which was applied for the removal of Cr(VI) from water. The adsorbents (PQ and Q) were characterized using the SEM, EDX, FTIR, TGA, XRD, and BET analyses. The XRD revealed the crystalline composition of the nanocomposite while the TGA indicated the incorporated extract as the primary component that degraded with an increase in temperature. The implication of the modifier was noticed to enhance the adsorption capacity of Q for Cr(VI) by the introduction of chemical functional groups. Optimum Cr(VI) removal was noticed at a pH of 2.0, adsorbent dose (50 mg), initial concentration (100 mg dm-3), and contact time (180 min). The kinetic adsorption data for both adsorbents was noticed to fit well to the pseudo-second-order model. The adsorption equilibrium data were best described by the Langmuir model. The uptake of Cr(VI) onto PQ and Q was feasible, endothermic (ΔH: PQ = 1.194 kJ mol-1 and Q = 34.64 kJ mol-1) and entropy-driven (ΔS : PQ = 64.89 J K-1 mol-1 and q = 189.7 J K-1 mol-1). Hence, the nanocomposite demonstrated potential for robust capacity to trap Cr(VI) from aqueous solution.
Collapse
Affiliation(s)
- James F. Amaku
- grid.442668.a0000 0004 1764 1269Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Segun Ogundare
- grid.412320.60000 0001 2291 4792Chemical Sciences Department, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Kovo G. Akpomie
- grid.412219.d0000 0001 2284 638XDepartment of Chemistry, University of the Free State, Bloemfontein, South Africa ,grid.10757.340000 0001 2108 8257Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Collins U. Ibeji
- grid.10757.340000 0001 2108 8257Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- grid.412219.d0000 0001 2284 638XDepartment of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|