1
|
Amaraneni M, Pang J, Bruckner JV, Muralidhara S, Mortuza TB, Gullick D, Hooshfar S, White CA, Cummings BS. Influence of Maturation on In Vivo Tissue to Plasma Partition Coefficients for Cis - and Trans -Permethrin. J Pharm Sci 2017; 106:2144-2151. [DOI: 10.1016/j.xphs.2017.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/14/2023]
|
2
|
The immature rat as a potential model for chemical risks to children: Ontogeny of selected hepatic P450s. Chem Biol Interact 2016; 256:167-77. [DOI: 10.1016/j.cbi.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/02/2016] [Accepted: 07/03/2016] [Indexed: 11/24/2022]
|
3
|
Luckanagul JA, Metavarayuth K, Feng S, Maneesaay P, Clark AY, Yang X, García AJ, Wang Q. Tobacco Mosaic Virus Functionalized Alginate Hydrogel Scaffolds for Bone Regeneration in Rats with Cranial Defect. ACS Biomater Sci Eng 2016; 2:606-615. [DOI: 10.1021/acsbiomaterials.5b00561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jittima Amie Luckanagul
- Department
of Chemistry and Biochemistry, University of South Carolina, 631
Sumter Street, Columbia, South Carolina 29208, United States
- Department
of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, Thailand 10330
| | - Kamolrat Metavarayuth
- Department
of Chemistry and Biochemistry, University of South Carolina, 631
Sumter Street, Columbia, South Carolina 29208, United States
| | - Sheng Feng
- Department
of Chemistry and Biochemistry, University of South Carolina, 631
Sumter Street, Columbia, South Carolina 29208, United States
| | - Phudit Maneesaay
- Department
of Pathology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngamwongwan Road, Lat Yao, Chatuchak, Bangkok, Thailand 10903
| | - Amy Y. Clark
- Woodruff
School of Mechanical Engineering and Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Xiaoming Yang
- Medical
Chronobiology Laboratory and Center for Colon Cancer Research, WJB Dorn VA Medical Center, 6439 Garners Ferry Road, Columbia, South Carolina 29209, United States
| | - Andrés J. García
- Woodruff
School of Mechanical Engineering and Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Qian Wang
- Department
of Chemistry and Biochemistry, University of South Carolina, 631
Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Carlander U, Li D, Jolliet O, Emond C, Johanson G. Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Int J Nanomedicine 2016; 11:625-40. [PMID: 26929620 PMCID: PMC4755468 DOI: 10.2147/ijn.s94370] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To assess the potential toxicity of nanoparticles (NPs), information concerning their uptake and disposition (biokinetics) is essential. Experience with industrial chemicals and pharmaceutical drugs reveals that biokinetics can be described and predicted accurately by physiologically-based pharmacokinetic (PBPK) modeling. The nano PBPK models developed to date all concern a single type of NP. Our aim here was to extend a recent model for pegylated polyacrylamide NP in order to develop a more general PBPK model for nondegradable NPs injected intravenously into rats. The same model and physiological parameters were applied to pegylated polyacrylamide, uncoated polyacrylamide, gold, and titanium dioxide NPs, whereas NP-specific parameters were chosen on the basis of the best fit to the experimental time-courses of NP accumulation in various tissues. Our model describes the biokinetic behavior of all four types of NPs adequately, despite extensive differences in this behavior as well as in their physicochemical properties. In addition, this simulation demonstrated that the dose exerts a profound impact on the biokinetics, since saturation of the phagocytic cells at higher doses becomes a major limiting step. The fitted model parameters that were most dependent on NP type included the blood:tissue coefficients of permeability and the rate constant for phagocytic uptake. Since only four types of NPs with several differences in characteristics (dose, size, charge, shape, and surface properties) were used, the relationship between these characteristics and the NP-dependent model parameters could not be elucidated and more experimental data are required in this context. In this connection, intravenous biodistribution studies with associated PBPK analyses would provide the most insight.
Collapse
Affiliation(s)
- Ulrika Carlander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dingsheng Li
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Claude Emond
- BioSimulation Consulting Inc., Newark, DE, USA; Department of Environmental and Occupational Health, School of Public Health, University of Montreal, QC, Canada
| | - Gunnar Johanson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Martin SA, McLanahan ED, El-Masri H, LeFew WR, Bushnell PJ, Boyes WK, Choi K, Clewell HJ, Campbell JL. Development of multi-route physiologically-based pharmacokinetic models for ethanol in the adult, pregnant, and neonatal rat. Inhal Toxicol 2012; 24:698-722. [DOI: 10.3109/08958378.2012.712165] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Loccisano AE, Campbell JL, Butenhoff JL, Andersen ME, Clewell HJ. Evaluation of placental and lactational pharmacokinetics of PFOA and PFOS in the pregnant, lactating, fetal and neonatal rat using a physiologically based pharmacokinetic model. Reprod Toxicol 2011; 33:468-490. [PMID: 21872655 DOI: 10.1016/j.reprotox.2011.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/25/2011] [Accepted: 07/22/2011] [Indexed: 11/24/2022]
Abstract
Perfluoroalkyl carboxylates and sulfonates (PFAAs) have many consumer and industrial applications. Developmental toxicity studies in animals have raised concern about potential developmental effects of PFOA and PFOS in humans. We have developed PBPK models for PFAAs in the rat to help define a relationship between external dose, internal tissue concentrations, and observed adverse effects, and to understand how physiological changes that occur during gestation and lactation affect tissue distribution of PFAAs in the mother, fetus, and neonate. The models developed here expand upon a PBPK model for PFAAs in the adult female rat, and are consistent with available PK data. These models, along with the adult rat PFAA models, published in the companion paper, will help address concerns about possible health effects due to PFAA exposure in the fetus and neonate and will be useful in comparing PK across life stages.
Collapse
Affiliation(s)
- Anne E Loccisano
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States.
| | - Jerry L Campbell
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States
| | - John L Butenhoff
- 3M Medical Department, Corporate Toxicology, 3M Center 220-2E-02, St. Paul, MN 55144, United States
| | - Melvin E Andersen
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States
| | - Harvey J Clewell
- Center for Human Health Assessment, The Hamner Institutes for Health Sciences, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709, United States
| |
Collapse
|
7
|
Tornero-Velez R, Mirfazaelian A, Kim KB, Anand SS, Kim HJ, Haines WT, Bruckner JV, Fisher JW. Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using a PBPK model. Toxicol Appl Pharmacol 2010; 244:208-17. [DOI: 10.1016/j.taap.2009.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 01/10/2023]
|
8
|
Kim KB, Anand SS, Kim HJ, White CA, Fisher JW, Tornero-Velez R, Bruckner JV. Age, dose, and time-dependency of plasma and tissue distribution of deltamethrin in immature rats. Toxicol Sci 2010; 115:354-68. [PMID: 20211939 DOI: 10.1093/toxsci/kfq074] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major objective of this project was to characterize the systemic disposition of the pyrethroid, deltamethrin (DLT), in immature rats, with emphasis on the age dependence of target organ (brain) dosimetry. Postnatal day (PND) 10, 21, and 40 male Sprague-Dawley rats received 0.4, 2, or 10 mg DLT/kg by gavage in glycerol formal. Serial plasma, brain, fat, liver, and skeletal muscle samples were collected for up to 510 h and analyzed for DLT and/or 3-phenoxybenzoic acid (PBA) content by high-performance liquid chromatography. Toxicokinetic data from previous experiments of the same design with young adult (PND 90) rats (Kim, K.-B., Anand, S. S., Kim, H. J., White, C. A., and Bruckner, J. V. [2008]. Toxicokinetics and tissue distribution of deltamethrin in adult Sprague-Dawley rats. Toxicol. Sci. 101, 197-205) were used to compare to immature rat data. Plasma and tissue DLT levels were inversely related to age. Preweanlings and weanlings showed markedly elevated brain concentrations and pronounced salivation, tremors, choreoathetosis, and eventual fatalities. Plasma DLT levels did not reliably reflect brain levels over time. Plasma:brain ratios were time and dose dependent, but apparently not age dependent. Brain levels were better correlated with the magnitude of salivation and tremors than plasma levels. Hepatic intrinsic clearance of DLT progressively increased during maturation, as did the hepatic extraction ratio. Thus, limited capacity to metabolically inactivate DLT appeared primarily responsible for the inordinately high target organ doses and acute neurotoxicity in pups and weanling rats. Hepatic blood flow was not rate limiting in any age group. Limited DLT hydrolysis was manifest in vivo in the pups by relatively low plasma PBA levels. Elevated exposure of the immature brain to a pyrethroid may prove to be of consequence for long-term, as well as short-term neurotoxicity.
Collapse
Affiliation(s)
- Kyu-Bong Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae, Gyongam 621-749, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Yoon M, Nong A, Clewell HJ, Taylor MD, Dorman DC, Andersen ME. Lactational Transfer of Manganese in Rats: Predicting Manganese Tissue Concentration in the Dam and Pups from Inhalation Exposure with a Pharmacokinetic Model. Toxicol Sci 2009; 112:23-43. [DOI: 10.1093/toxsci/kfp197] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
McLanahan ED, Andersen ME, Fisher JW. A biologically based dose-response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency. Toxicol Sci 2008; 102:241-53. [PMID: 18178547 DOI: 10.1093/toxsci/kfm312] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A biologically based dose-response (BBDR) model was developed for dietary iodide and the hypothalamic-pituitary-thyroid (HPT) axis in adult rats. This BBDR-HPT axis model includes submodels for dietary iodide, thyroid-stimulating hormone (TSH), and the thyroid hormones, T(4) and T(3). The submodels are linked together via key biological processes, including (1) the influence of T(4) on TSH production (the HPT axis negative feedback loop), (2) stimulation of thyroidal T(4) and T(3) production by TSH, (3) TSH upregulation of the thyroid sodium (Na(+))/iodide symporter, and (4) recycling of iodide from metabolism of thyroid hormones. The BBDR-HPT axis model was calibrated to predict steady-state concentrations of iodide, T(4), T(3), and TSH for the euthyroid rat whose dietary intake of iodide was 20 mug/day. Then the BBDR-HPT axis model was used to predict perturbations in the HPT axis caused by insufficient dietary iodide intake, and simulation results were compared to experimental findings. The BBDR-HPT axis model was successful in simulating perturbations in serum T(4), TSH, and thyroid iodide stores for low-iodide diets of 0.33-1.14 mug/day. Model predictions of serum T(3) concentrations were inconsistent with observations in some cases. BBDR-HPT axis model simulations show a steep dose-response relationship between dietary intake of iodide and serum T(4) and TSH when dietary iodide intake becomes insufficient (less than 2 mug/day) to sustain the HPT axis. This BBDR-HPT axis model can be linked with physiologically based pharmacokinetic models for thyroid-active chemicals to evaluate and predict dose-dependent HPT axis alterations based on hypothesized modes of action. To support continued development of this model, future studies should include time course data after perturbation of the HPT axis to capture changes in endogenous iodide, serum TSH, T(4), and T(3).
Collapse
Affiliation(s)
- Eva D McLanahan
- University of Georgia, Interdisciplinary Toxicology Program, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
11
|
Mahle DA, Gearhart JM, Grigsby CC, Mattie DR, Barton HA, Lipscomb JC, Cook RS. Age-dependent partition coefficients for a mixture of volatile organic solvents in Sprague-Dawley rats and humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1745-51. [PMID: 17885931 DOI: 10.1080/15287390701458991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The absorption, distribution, metabolism, and excretion of volatile organic compounds (VOCs) are critically determined by a few chemical-specific factors, notably their blood and tissue partition coefficients (PC) and metabolism. Age-specific values for PCs in rats have rarely been reported or utilized in pharmacokinetic modeling for predicting dosimetry in toxicity studies with rats progressing through their lifestages. A mixture of six VOCs (benzene, chloroform, methyl ethyl ketone, methylene chloride, trichloroethylene, and perchloroethylene) was used to determine blood:air and tissue:air PCs in rats at three different ages (postnatal d 10, 60 d, and 2 yr) and blood:air PCs in pediatric and adult human blood. No differences with age in human blood:air PCs for the six compounds were observed. Rat blood:air PCs increased with age varying with compound. Tissue:air PCs showed tissue-specific changes with age. Water-soluble methyl ethyl ketone showed no age-dependent differences. Partition coefficients, particularly the blood:air PC, are key determinants of the rodent and human blood concentrations; age-appropriate values improve the accuracy of pharmacokinetic model predictions of population variability and age-specific exposures.
Collapse
Affiliation(s)
- Deirdre A Mahle
- AFRL/HEPB, Wright-Patterson Air Force Base, Ohio 45433, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mirfazaelian A, Fisher JW. Organ growth functions in maturing male Sprague-Dawley rats based on a collective database. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1052-63. [PMID: 17497417 DOI: 10.1080/15287390601172106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ten different organ weights (liver, spleen, kidneys, heart, lungs, brain, adrenals, testes, epididymes, and seminal vesicles) of male Sprague-Dawley (S-D) rats of different ages (1-280 d) were extracted based on a thorough literature survey database. A generalized Michaelis-Menten (GMM) model, used to fit organ weights versus age in a previous study (Schoeffner et al., 1999) based on a limited data, was used to find the best fit model for the present expanded data compilation. The GMM model has the functional form: Wt = (Wt(o).K(gamma) + Wt(max).Age(gamma))/(K(gamma) + Age(gamma)) where Wt is organ/tissue weight at a specified age, Wt(o) and Wt(max) are weight at birth and maximal growth, respectively, and K and gamma are constants. Organ weights were significantly correlated with their respective ages for all organs and tissues. GMM-derived organ growth and percent body weight (%BW) fractions of different tissues were plotted against animal age and compared with experimental values as well as previously published models. The GMM-based organ growth and %BW fraction profiles were in general agreement with our empirical data as well as with previous studies. The present model was compared with the GMM model developed previously for six organs--liver, spleen, kidneys, heart, lungs, and brain--based on a limited data, and no significant difference was noticed between the two sets of predictions. It was concluded that the GMM models presented herein for different male S-D rats organs (liver, spleen, kidneys, heart, lungs, brain, adrenals, testes, epididymes, and seminal vesicles) are capable of predicting organ weights and %BW ratios accurately at different ages.
Collapse
Affiliation(s)
- Ahmad Mirfazaelian
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|