1
|
Prokisch J, Nguyen DHH, Muthu A, Ferroudj A, Singh A, Agrawal S, Rajput VD, Ghazaryan K, El-Ramady H, Rai M. Carbon Nanodot-Microbe-Plant Nexus in Agroecosystem and Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1249. [PMID: 39120354 PMCID: PMC11314255 DOI: 10.3390/nano14151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
Collapse
Affiliation(s)
- József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat 66000, Vietnam
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Arjun Muthu
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Aya Ferroudj
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Animal Husbandry, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia;
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Hassan El-Ramady
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahendra Rai
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
2
|
Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, Khedulkar AP, Gaballah MS, Singh J, Chung WJ, Nguyen DD. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169331. [PMID: 38103619 DOI: 10.1016/j.scitotenv.2023.169331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Thanh-Cong Nguyen
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Aasif Mohmad Lone
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Akhil Pradiprao Khedulkar
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mohamed S Gaballah
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
3
|
Vahabi Shekarloo M, Panjali Z, Mehrifar Y, Ramezanifar S, Naziri SH, Ghasemi Koozekonan A, Moradpour Z, Zendehdel R. Application of a novel exposure limit approach for co-exposure of chemicals: a field study by in-vitro design. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1269-1277. [PMID: 35674128 DOI: 10.1080/09603123.2022.2084513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
This study has suggested an occupational exposure limit (OEL) based on the co-exposure approach in an iron-foundry industry. Respirable dust was collected in an iron casting industry using the NIOSH 0600 method. The DNA damage was obtained by comet assay. The lower confidence interval of the benchmark dose (BMDL) was employed for exposure limit evaluation. The estimated BMDL of the cell line was extrapolated to human subjects. Based on the Hill model, a BMDL 1.65 µg for chemical mixture has been estimated for the A549 cell line. According to uncertainty factors, permitted daily exposure (PDE) was predicted in humans. However, PDE of 3.9 μg/m3 was specified as the time-weighted average limit for toxic respirable dust in the casting industry. In this study, OEL for active respirable dust in the casting industry has been proposed. The industry-based standard for active respirable dust has been proposed for better management of co-exposure.
Collapse
Affiliation(s)
- Masoomeh Vahabi Shekarloo
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Panjali
- Department of Occupational Health Engineering, Faculty of Health and Medical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Younes Mehrifar
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soleiman Ramezanifar
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Husein Naziri
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Ghasemi Koozekonan
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Moradpour
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Vats V, Melton G, Islam M, Krishnan VV. FTIR spectroscopy as a convenient tool for detection and identification of airborne Cr(VI) compounds arising from arc welding fumes. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130862. [PMID: 36708696 DOI: 10.1016/j.jhazmat.2023.130862] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Given the significant presence of the carcinogenic Cr(VI) in arc welding fumes from stainless steels, it is also important, in addition to estimating the Cr(VI) levels, to identify Cr(VI) compounds, as it throws light on the mechanistic pathways towards fume formation. FTIR data is presented in this paper for arc welding fumes collected from Manual Metal Arc Welding (MMA), Flux Cored Arc Welding (FCAW) and Solid Wire Welding (Metal Inert/ Active Gas Welding [MIG/ MAG]). For MMA and FCAW samples, clear spectra corresponding to Na, K, dichromates was observed at wave number of around 725-740 cm-1 and at 890-900 cm-1. Chromate species were also observed at around 850-855 cm-1, as was evidence of CrO3 (chromium trioxide) too (950-970 cm-1). The identification of these compounds was done by carefully identifying the Cr-O-Cr anti-symmetric vibrations, the symmetric stretching of the CrO4 tetrahedra, and the stretching vibrations of the planar CrO3 structure for the chromium trioxide. All the above compounds were volatile, and present as nanoparticles in welding fumes, thereby potentially causing significant harm to the welders. Additionally, crystalline phases (Fe-Mn spinels) were also observed through powder XRD, and the data was compared with ion chromatography estimates for Cr(VI) and found to be consistent.
Collapse
Affiliation(s)
- Vishal Vats
- Teesside University, United Kingdom; NSIRC, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
5
|
Pikula K, Kirichenko K, Chernousov V, Parshin S, Masyutin A, Parshina Y, Pogodaev A, Gridasov A, Tsatsakis A, Golokhvast K. The Impact of Metal-Based Nanoparticles Produced by Different Types of Underwater Welding on Marine Microalgae. TOXICS 2023; 11:105. [PMID: 36850981 PMCID: PMC9966890 DOI: 10.3390/toxics11020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Underwater wet welding is commonly used in joining pipelines and in underwater construction. Harmful and hazardous compounds are added to many flux-cored wires for underwater welding and cutting, and can have a negative impact on marine life. The specific objective of this study was to evaluate the aquatic toxicity of two suspension samples obtained using welding electrode and flux-cored wire in marine microalgae Attheya ussuriensis and Porphyridium purpureum. Growth rate inhibition, cell size, and biochemical changes in microalgae were evaluated by flow cytometry. The results of the bioassay demonstrated that the suspension obtained after welding with electrode had an acute toxic impact on diatomic microalgae A. ussuriensis, and both tested suspensions revealed chronic toxicity in this microalga with a 40% growth rate inhibition after exposure to 40-50% of prepared suspensions for 7 days. Red algae P. purpureum revealed tolerance to both suspensions caused by exopolysaccharide covering, which prevents the toxic impact of metal cations such as Al, Ti, Mn, Fe, and Zn, which are considered the main toxic components of underwater welding emissions.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Konstantin Kirichenko
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| | - Vladimir Chernousov
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| | - Sergey Parshin
- Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Alexander Masyutin
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Yulia Parshina
- St. Petersburg University, 7–9 Universitetskaya Embankment, Str., St. Petersburg 199034, Russia
| | - Anton Pogodaev
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Alexander Gridasov
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Aristidis Tsatsakis
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
- Medical School, University of Crete, 13 Andrea Kalokerinou, Heraklion 71003, Greece
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
6
|
Hedberg YS, Wei Z, McCarrick S, Romanovski V, Theodore J, Westin EM, Wagner R, Persson KA, Karlsson HL, Odnevall Wallinder I. Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125273. [PMID: 33581669 DOI: 10.1016/j.jhazmat.2021.125273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 05/28/2023]
Abstract
Welding fume particles are hazardous. Their toxicity likely depends on their composition and reactivity. This study aimed at exploring the role of sodium or other fluorides (NaF), which are intentionally added to flux-cored wire electrodes for stainless steel welding, on the solubility (in phosphate buffered saline) and toxicity of the generated welding fume particles. A multi-analytical particle characterization approach along with in-vitro cell assays was undertaken. The release of Cr(VI) and Mn from the particles was tested as a function of fluoride solution concentration. The welding fume particles containing NaF released significantly higher amounts of Cr(VI) compared with solid wire reference fumes, which was associated with increased cytotoxicity and genotoxicity in-vitro. No crystalline Na or potassium (K) containing chromates were observed. Cr(VI) was incorporated in an amorphous mixed oxide. Solution-added fluorides did not increase the solubility of Cr(VI), but contributed to a reduced Mn release from both solid and flux-cored wire fume particles and the reduction of Cr(VI) release from solid wire fume particles. Chemical speciation modeling suggested that metal fluoride complexes were not formed. The presence of NaF in the welding electrodes did not have any direct, but possibly an indirect, role in the Cr(VI) solubility of welding fumes.
Collapse
Affiliation(s)
- Y S Hedberg
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada; Surface Science Western, The University of Western Ontario, London, Ontario N6G 0J3, Canada.
| | - Z Wei
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden
| | - S McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - V Romanovski
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", 119049 Moscow, Russia; Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - J Theodore
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden
| | - E M Westin
- voestalpine Böhler Welding Group GmbH, Böhler-Welding-Str. 1, 8605 Kapfenberg, Austria
| | - R Wagner
- Linde GmbH/UniBw Munich, Germany
| | | | - H L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - I Odnevall Wallinder
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 10044 Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
7
|
Audignon-Durand S, Gramond C, Ducamp S, Manangama G, Garrigou A, Delva F, Brochard P, Lacourt A. Development of a Job-Exposure Matrix for Ultrafine Particle Exposure: The MatPUF JEM. Ann Work Expo Health 2021; 65:516-527. [PMID: 33637984 DOI: 10.1093/annweh/wxaa126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Ultrafine particles (UFPs) are generated from common work processes and have thus existed for a long time. Far more prevalent than engineered nanoparticles, they share common toxicological characteristics with them. However, there is no existing retrospective assessment tool specific to UFPs, for example, for epidemiological purposes. Thus, we aimed to develop a job-exposure matrix dedicated to UFPs. METHOD Fifty-seven work processes were identified as well as the chemical composition of UFPs emitted, following a literature review and the input of an expert panel. These work processes were associated with occupational codes as defined by the ISCO 1968 classification. The probability and frequency of UFP exposure were assessed for each combination of occupational code and process. Summarized probabilities and frequencies were then calculated for all ISCO occupational codes associated with several processes. Variations in exposure over time or across industrial sectors were accounted for in the assessment of each occupational code. RESULTS In the ISCO classification, 52.8% of the occupational codes (n = 835) assessed were associated with exposure to UFPs, consisting mainly of carbonaceous, metallic, and mineral families (39.5%, 22 and, 15.8%, respectively). Among them, 42.6% involved very probable exposure, and at a high frequency (regularly or continuously). CONCLUSION These results suggest that occupational exposure to UFPs may be extensive at the workplace and could concern a wide variety of workers. Pending the integration of a third parameter assessing the intensity of UFP exposure, the MatPUF JEM already constitutes a promising and easy-to-use tool to study the possible adverse health effects of UFPs at work. It may also guide prevention policies in the occupational environments concerned, including those involving engineered nanoparticles.
Collapse
Affiliation(s)
- Sabyne Audignon-Durand
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Céline Gramond
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| | - Stéphane Ducamp
- Santé Publique France, Division of Environmental and Occupational health, 12 rue du Val d'Osne, Saint Maurice, France
| | - Guyguy Manangama
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Alain Garrigou
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| | - Fleur Delva
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Patrick Brochard
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France.,Bordeaux University Hospital, Service of Occupational Medicine and Occupational Pathology, 12 rue Dubernat, Talence, France
| | - Aude Lacourt
- University of Bordeaux, Inserm UMR 1219 EPICENE Team, Bordeaux Population Health Research Center, 146 rue Léo Saignat, Bordeaux, France
| |
Collapse
|
8
|
Jensen ACØ, Harboe H, Brostrøm A, Jensen KA, Fonseca AS. Nanoparticle Exposure and Workplace Measurements During Processes Related to 3D Printing of a Metal Object. Front Public Health 2020; 8:608718. [PMID: 33324605 PMCID: PMC7723871 DOI: 10.3389/fpubh.2020.608718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Metal 3D printing has many potential uses within prototyping and manufacturing. Selective laser melting (SLM) is a process that uses metal powders in the micrometer range as printing material. The particle release from the entire SLM printing process is not well-studied. While the 3D printing itself often occurs in a sealed chamber, activities related to the process can potentially release harmful metal particles to the indoor working environment through resuspension of the printing powder or via incident nanoparticles generated during printing. The objective of this study was to improve the understanding of particle exposure in work processes associated with 3D printing and potential needs for interventions by a case study conducted in a 3D printing facility. In this setting, direct release and dispersion of particles throughout the workspace from processes related to metal 3D printing was investigated. The release from five activities were studied in detail. The activities included post-printing cleaning, object annealing, and preparation of new base substrate for the next printing was. Three of the five measured activities caused particles number concentrations in the working environment to increase above background levels which were found to be 8·102 cm-3. Concentrations during chamber emptying and the open powder removal system (PRS) cleaning processes increased to 104 and 5·103 cm-3, respectively, whereas grinding activity increased number concentrations to 2.5·105 cm-3. Size distributions showed that particles were mainly smaller than 200 nm. Respirable mass concentrations were 50.4 μg m-3, collected on filters. This was corroborated by respirable mass measured with a DustTrak of 58.4 μg m-3. Respirable mass concentrations were below the occupational exposure limits in Denmark for an 8 h time-weighted average.
Collapse
Affiliation(s)
| | | | - Anders Brostrøm
- Technical University of Denmark, DTU Nanolab - National Centre for Nano Fabrication and Characterization, Kgs Lyngby, Denmark
| | - Keld A Jensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ana S Fonseca
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
9
|
Keyter M, Van Der Merwe A, Franken A. Particle size and metal composition of gouging and lancing fumes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2019; 16:643-655. [PMID: 31361583 DOI: 10.1080/15459624.2019.1639719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m3 (inhalable), 1.83-13.96 mg/m3 (thoracic) and 0.88-15.82 mg/m3 (respirable) for gouging; and 2.34-5.60 mg/m3 (inhalable), 2.82-4.01 mg/m3 (thoracic), and 1.89-3.24 mg/m3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures.
Collapse
Affiliation(s)
| | - Alicia Van Der Merwe
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| | - Anja Franken
- Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University , Potchefstroom , South Africa
| |
Collapse
|
10
|
Mauro M, Crosera M, Bovenzi M, Adami G, Maina G, Baracchini E, Larese Filon F. In vitro transdermal absorption of Al2O3 nanoparticles. Toxicol In Vitro 2019; 59:275-280. [DOI: 10.1016/j.tiv.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
|
11
|
Gomes JF, Miranda RM, Oliveira JP, Esteves HM, Albuquerque PC. Evaluation of the amount of nanoparticles emitted in LASER additive manufacture/welding. Inhal Toxicol 2019; 31:125-130. [DOI: 10.1080/08958378.2019.1621965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. F. Gomes
- Área Departamental de Engenharia Química, ISEL, Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal
- CERENA, Centro de Recursos Naturais e Ambiente/Instituto Superior Técnico – Universidade de Lisboa, Lisboa, Portugal
| | - R. M. Miranda
- Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologias, UNIDEMI, Universidade Nova de Lisboa, Caparica, Portugal
| | - J. P. Oliveira
- Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologias, UNIDEMI, Universidade Nova de Lisboa, Caparica, Portugal
| | - H. M. Esteves
- CERENA, Centro de Recursos Naturais e Ambiente/Instituto Superior Técnico – Universidade de Lisboa, Lisboa, Portugal
| | - P. C. Albuquerque
- ESTeSL, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Krishnaraj J, Baba AB, Viswanathan P, Veeravarmal V, Balasubramanian V, Nagini S. Impact of stainless-steel welding fumes on proteins and non-coding RNAs regulating DNA damage response in the respiratory tract of Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1231-1245. [PMID: 30507362 DOI: 10.1080/15287394.2018.1550027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Substantial evidence has established the negative impact of inhalation exposure to welding fumes on respiratory functions. The aim of the present study was to investigate the effect of welding fume inhalation on expression of molecules that function as sensors, transducers and effectors of DNA damage response (DDR) in the respiratory tract of male Sprague-Dawley rats. Animals were exposed to 50 mg/m3 stainless steel welding fumes for 1 h/d for 4, 8, and 12 weeks, respectively. Histological examination demonstrated preneoplastic changes in trachea and bronchi with focal atelectasis and accumulation of chromium (Cr) in the lungs. This was associated with elevated levels of DNA damage markers (8-oxodG, γH2AX), ATM phosphorylation, cell cycle arrest, apoptosis induction, activation of homologous recombination (HR), non-homologous end joining (NHEJ), and Nrf2 signaling, as well as altered expression of noncoding RNAs (ncRNAs). However, after 12 weeks of exposure, DDR was compromised as reflected by resumption of the cell cycle, repair inhibition, and failure of apoptosis. Data demonstrate that exposure to welding fumes influences two crucial layers of DDR regulation, phosphorylation of key proteins in NHEJ and HR, as well as the ncRNAs that epigenetically modulate DDR. Evidence indicates that marked DNA damage coupled with non-productive DNA repair and apoptosis avoidance may be involved in neoplastic transformation.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Abdul Basit Baba
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| | - Periasamy Viswanathan
- b Division of Pathology, Rajah Muthiah Medical College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Veeran Veeravarmal
- c Division of Oral Pathology, Rajah Muthiah Dental College & Hospital , Annamalai University , Annamalinagar , TN , India
| | - Viswalingam Balasubramanian
- d Department of Manufacturing Engineering, Faculty of Engineering and Technology , Annamalai University , Annamalainagar , TN , India
| | - Siddavaram Nagini
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , TN , India
| |
Collapse
|
13
|
Mino J, Quémerais B. Using a Particle Counter to Inform the Creation of Similar Exposure Groups and Sampling Protocols in a Structural Steel Fabrication Facility. TOXICS 2017; 5:toxics5040034. [PMID: 29168761 PMCID: PMC5750562 DOI: 10.3390/toxics5040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/16/2022]
Abstract
The objective of this project was to create similar exposure groups (SEGs) for occupational monitoring in a structural steel fabrication facility. Qualitative SEG formation involved worksite observation, interviews, and audits of materials and procedures. These were supplemented with preliminary task-based shop survey data collected using a condensation particle counter. A total of six SEGs were formed, with recommendations for occupational exposure sampling for five groups, as well as ambient sampling recommendations to address areas on the operational floor found to have higher particle concentrations. The combination of direct reading device data and qualitative SEG formation techniques is a valuable approach, as it contains both the monetary and temporal costs of worksite exposure monitoring. This approach also provides an empowering in-house analysis of potentially problematic areas, and results in the streamlining of occupational exposure assessment.
Collapse
Affiliation(s)
- James Mino
- Division of Preventive Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | - Bernadette Quémerais
- Division of Preventive Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
14
|
Pacheco RP, Gomes JF, Miranda RM, Quintino ML. Evaluation of the amount of nanoparticles emitted in welding fume from stainless steel using different shielding gases. Inhal Toxicol 2017; 29:282-289. [PMID: 28805080 DOI: 10.1080/08958378.2017.1358778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The primary objective of this study was to correlate the emission of macro and nanoparticles released during the process of metal inert gas/metal active gas (MIG/MAG) of stainless steel with different gas mixtures. Using different gas mixtures with different heat inputs, it was possible to determine fume formation rates and surface areas of nanoparticles with alveolar lung deposition capacity. It was found, how the various transfer modes and the type of gas protection, in particular, the percentage of active elements in the chemical composition of the gas, affect the amount of fumes generated and also the generation of nanoparticles with a high capacity of deposition. The spray transfer mode always shows higher values of nanoparticles surface area, unlike the fume formation rates. Among the tested mixtures 82%Ar + 18%CO2 generates higher emissions of nanoparticles as well as fume formation rates.
Collapse
Affiliation(s)
- R P Pacheco
- a UNIDEMI, Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, FCT , Universidade Nova de Lisboa , Caparica , Portugal
| | - J F Gomes
- b CERENA, Centro de Recursos Naturais e Ambiente/Instituto Superior Técnico , Universidade de Lisboa , Lisboa , Portugal.,c Área Departamental de Engenharia Química , ISEL, Instituto Superior de Engenharia de Lisboa , Lisboa , Portugal
| | - R M Miranda
- a UNIDEMI, Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, FCT , Universidade Nova de Lisboa , Caparica , Portugal
| | - M L Quintino
- d Instituto Superior Técnico , Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
15
|
Lalita, Singh AP, Sharma RK. Selective sorption of Fe(II) ions over Cu(II) and Cr(VI) ions by cross-linked graft copolymers of chitosan with acrylic acid and binary vinyl monomer mixtures. Int J Biol Macromol 2017; 105:1202-1212. [PMID: 28757421 DOI: 10.1016/j.ijbiomac.2017.07.163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/25/2017] [Accepted: 07/26/2017] [Indexed: 01/31/2023]
Abstract
Low-cost and environment-friendly polymeric adsorbents for sorption of heavy metal ions were synthesized by simultaneous graft copolymerization and cross-linking of acrylic acid alone and with comonomers glycidyl methacrylate, acrylamide and acrylonitrile onto chitosan using free radical initiator and cross-linker in aqueous medium. Structural aspects of cross-linked graft copolymers have been characterized by FTIR, SEM, TGA/DTA, XRD and swelling behavior at pH 2.2, 7.0 and 9.4. An attempt has been made to study sorption of Cr(VI), Cu(II) and Fe(II) ions on cross-linked graft copolymers by equilibration method and to establish a relationship between structural aspects of graft copolymers and metal ion uptake efficiency and selectivity. Solutions of individual ions were used for non-competitive sorption onto synthesized bio-adsorbents as a function of change in contact time, temperature, pH and metal ion concentration in feed. Competitive sorption investigation was performed from an aqueous solution of ternary metal ions by batch equilibration at 25°C and at 7.0pH. Cross-linked graft copolymers showed better results than unmodified chitosan and showed preferential sorption of Fe(II) ions than Cu(II) and Cr(VI) ions.
Collapse
Affiliation(s)
- Lalita
- IK Gujral Punjab Technical University, Kapurthala, Punjab, 144601 India; University Institute of Sciences, Chemistry Department, Chandigarh University, Gharuan, Mohali, Punjab, 140413 India
| | - Anirudh P Singh
- IK Gujral Punjab Technical University, Kapurthala, Punjab, 144601 India
| | - Rajeev Kr Sharma
- Department of Chemistry, DAV College, Jalandhar, Punjab, 144008 India.
| |
Collapse
|
16
|
Gomes JF, Miranda RM. Determination of "safe" and "critical" nanoparticles exposure to welders in a workshop. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:767-775. [PMID: 28524808 DOI: 10.1080/15287394.2017.1286904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study examined consequences of "safe" versus "critical" exposure to nanoparticles (NP) released during welding operations. With this aim in mind, a set of measurements regarding NP emissions was undertaken in a workshop during welding by metal active gas of carbon steel using different mixtures of argon (Ar) and carbon dioxide (CO2) as well as different process parameters which might influence emission of (NP). If these measurements were conducted in several locations away from the welding sources, the graphical representation of the obtained observations with time enabled definition of "safe" and "critical" regions within a welding workshop in terms of welder's exposure. This information may be combined with the results of risk analysis derived by control banding and helps to categorize the sites where regulatory measures such as operation containment or dedicated exhaust ventilation need to be implemented.
Collapse
Affiliation(s)
- J F Gomes
- a CERENA - Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico - Universidade Técnica de Lisboa , Lisboa , Portugal
- b ISEL - Instituto Superior de Engenharia de Lisboa , Área Departamental de Engenharia Química , Lisboa , Portugal
| | - R M Miranda
- c UNIDEMI, Departamento de Engenharia Mecânica e Industrial , Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa , Caparica , Portugal
| |
Collapse
|
17
|
Présumé M, Simon-Deckers A, Tomkiewicz-Raulet C, Le Grand B, Tran Van Nhieu J, Beaune G, Duruphty O, Doucet J, Coumoul X, Pairon JC, Boczkowski J, Lanone S, Andujar P. Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology 2016; 10:1535-1544. [PMID: 27680323 DOI: 10.1080/17435390.2016.1242797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of the great promises that the development of nanotechnologies can offer, concerns regarding potential adverse health effects of occupational exposure to nanoparticle (NP) is raised. We recently identified metal oxide NP in lung tissue sections of welders, located inside macrophages infiltrated in fibrous regions. This suggests a role of these NP in the lung alterations observed in welders. We therefore designed a study aimed to investigate the pulmonary effects, in mice, of repeated exposure to NP administered at occupationally relevant doses. We therefore chose four metal oxide NPs representative of those found in the welder's lungs: Fe2O3, Fe3O4, MnFe2O4 and CrOOH. These NPs were administered weekly for up to 3 months at two different doses: 5 μg, chosen as occupationally relevant to welding activity, and 50 μg, chosen as occupationally relevant to the context of an NP-manufacturing facility. Our results show that 3 month-repeated exposures to 5 μg NP induced limited pulmonary effects, characterized by the development of a mild peribronchiolar fibrosis observed for MnFe2O4 and CrOOH NP only. This fibrotic event was further extended in terms of intensity and localization after the repeated administration of 50 μg NP: all but Fe2O3 NP induced the development of peribronchiolar, perivascular and alveolar fibrosis, together with an interstitial inflammation. Our data demonstrate for the first time a potential risk for respiratory health posed by repeated exposure to NP at occupationally relevant doses. Given these results, the development of occupational exposure limits (OELs) specifically dedicated to NP exposure might therefore be an important issue to address.
Collapse
Affiliation(s)
| | - Angélique Simon-Deckers
- a INSERM, U955, Team4 , Créteil , France.,b CNRS, UMR 8502, Laboratoire de Physique des Solides , Orsay , France
| | - Céline Tomkiewicz-Raulet
- c INSERM, UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire , Paris , France.,d Université Paris Descartes , Paris , France
| | - Béatrice Le Grand
- c INSERM, UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire , Paris , France
| | - Jeanne Tran Van Nhieu
- e APHP, CHU Henri Mondor, Service d'Anatomo-Pathologie , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France
| | - Gregory Beaune
- g Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris , Paris , France
| | - Olivier Duruphty
- g Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris , Paris , France
| | - Jean Doucet
- b CNRS, UMR 8502, Laboratoire de Physique des Solides , Orsay , France
| | - Xavier Coumoul
- c INSERM, UMR-S1124, Toxicologie Pharmacologie et Signalisation cellulaire , Paris , France.,d Université Paris Descartes , Paris , France
| | - Jean-Claude Pairon
- a INSERM, U955, Team4 , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France.,h Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie professionnelle , Créteil , France , and
| | - Jorge Boczkowski
- a INSERM, U955, Team4 , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France.,i APHP, DHU A-TVB, CHU Henri Mondor, Service d'Explorations fonctionnelles respiratoires , Créteil , France
| | - Sophie Lanone
- a INSERM, U955, Team4 , Créteil , France.,h Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie professionnelle , Créteil , France , and
| | - Pascal Andujar
- a INSERM, U955, Team4 , Créteil , France.,f Université Paris-Est Créteil, Faculté de Médecine , Créteil , France.,h Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie professionnelle , Créteil , France , and
| |
Collapse
|
18
|
Indirect Prediction of Welding Fume Diffusion inside a Room Using Computational Fluid Dynamics. ATMOSPHERE 2016. [DOI: 10.3390/atmos7060074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Szewczyńska M, Pągowska E, Pyrzyńska K. Emissions of fluorides from welding processes. J Environ Sci (China) 2015; 37:179-183. [PMID: 26574102 DOI: 10.1016/j.jes.2015.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 06/05/2023]
Abstract
The levels of fluoride airborne particulates emitted from welding processes were investigated. They were sampled with the patented IOM Sampler, developed by J. H. Vincent and D. Mark at the Institute of Occupational Medicine (IOM), personal inhalable sampler for simultaneous collection of the inhalable and respirable size fractions. Ion chromatography with conductometric detection was used for quantitative analysis. The efficiency of fluoride extraction from the cellulose filter of the IOM sampler was examined using the standard sample of urban air particle matter SRM-1648a. The best results for extraction were obtained when water and the anionic surfactant N-Cetyl-N-N-N-trimethylammonium bromide (CTAB) were used in an ultrasonic bath. The limits of detection and quantification for the whole procedure were 8μg/L and 24μg/L, respectively. The linear range of calibration was 0.01-10mg/L, which corresponds to 0.0001-0.1mg of fluorides per m(3) in collection of a 20L air sample. The concentration of fluorides in the respirable fraction of collected air samples was in the range of 0.20-1.82mg/m(3), while the inhalable fraction contained 0.23-1.96mg/m(3) of fluorides during an eight-hour working day in the welding room.
Collapse
Affiliation(s)
- Małgorzata Szewczyńska
- Department of Chemical and Aerosol Hazards, Central Institute for Labour Protection, - National Research Institute, Czerniakowska 16 00-701 Warsaw, Poland.
| | - Emilia Pągowska
- Department of Chemical and Aerosol Hazards, Central Institute for Labour Protection, - National Research Institute, Czerniakowska 16 00-701 Warsaw, Poland
| | - Krystyna Pyrzyńska
- Faculty of Chemistry, University of Warsaw, ul.Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Byeon JH, Park JH, Peters TM, Roberts JT. Reducing the cytotoxicity of inhalable engineered nanoparticles via in situ passivation with biocompatible materials. JOURNAL OF HAZARDOUS MATERIALS 2015; 292:118-125. [PMID: 25797930 DOI: 10.1016/j.jhazmat.2015.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
The cytotoxicity of model welding nanoparticles was modulated through in situ passivation with soluble biocompatible materials. A passivation process consisting of a spark discharge particle generator coupled to a collison atomizer as a co-flow or counter-flow configuration was used to incorporate the model nanoparticles with chitosan. The tested model welding nanoparticles are inhaled and that A549 cells are a human lung epithelial cell line. Measurements of in vitro cytotoxicity in A549 cells revealed that the passivated nanoparticles had a lower cytotoxicity (>65% in average cell viability, counter-flow) than the untreated model nanoparticles. Moreover, the co-flow incorporation between the nanoparticles and chitosan induced passivation of the nanoparticles, and the average cell viability increased by >80% compared to the model welding nanoparticles. As a more convenient way (additional chitosan generation and incorporation devices may not be required), other passivation strategies through a modification of the welding rod with chitosan adhesive and graphite paste did also enhance average cell viability (>58%). The approach outlined in this work is potentially generalizable as a new platform, using only biocompatible materials in situ, to treat nanoparticles before they are inhaled.
Collapse
Affiliation(s)
- Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| | - Jae Hong Park
- Department of Occupational and Environmental Health, University of Iowa, IA 52242, United States
| | - Thomas M Peters
- Department of Occupational and Environmental Health, University of Iowa, IA 52242, United States
| | - Jeffrey T Roberts
- Department of Chemistry, Purdue University, IN 47907, United States.
| |
Collapse
|
21
|
Submicron Particles during Macro- and Micro-Weldings Procedures in Industrial Indoor Environments and Health Implications for Welding Operators. METALS 2015. [DOI: 10.3390/met5021045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Guerreiro C, Gomes JF, Carvalho P, Santos TJG, Miranda RM, Albuquerque P. Characterization of airborne particles generated from metal active gas welding process. Inhal Toxicol 2015; 26:345-52. [PMID: 24730680 DOI: 10.3109/08958378.2014.897400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.
Collapse
Affiliation(s)
- C Guerreiro
- Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, UNIDEMI, Universidade Nova de Lisboa , Caparica , Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Bergström U, Ekstrand-Hammarström B, Hägglund L, Wingfors H. Comparing acute toxicity of gunshot particles, from firing conventional and lead-free ammunition, in pulmonary epithelial cell cultures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:645-661. [PMID: 26039682 DOI: 10.1080/15287394.2015.1017682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Numerous studies demonstrated that the use of lead (Pb)-containing ammunition is associated with mainly chronic health problems and also is a burden on the environment and wildlife. Recently, a number of reports showed evidence of undesirable acute health effects related to the use of newly developed Pb-free small-caliber ammunition. In this study, particles from leaded and Pb-free ammunition were collected in liquid collection medium, in a highly controlled chamber, while firing a pistol (9 mm) or a rifle (7.62 × 51 mm). The emitted particles were typically smaller than 4 μm, with the great majority in even smaller size ranges, as shown by gravimetrical analysis and a multistage impactor. Chemical analysis revealed significant differences in content and concentration of several metals in the particles. After administration of the liquids to alveolar and bronchial in vitro cell systems, particles were taken up by the cells; the Pb-free particles displayed higher cytotoxicity (EC50 = 2 μg/cm(2)) than particles from Pb ammunition. High correlation factors (>0.9) were found between cell death and content of copper and zinc. Particles from both Pb-containing and Pb-free ammunition were able to induce oxidative stress and the proinflammatory marker interleukin (IL)-8 in both in vitro systems. These results support previous findings that indicate an association between gunshot emissions and metal fume fever. This study demonstrates the usefulness of combining chemical data with biological in vitro responses in assessing acute toxicological effects from emissions from firing both Pb and Pb-free ammunition.
Collapse
Affiliation(s)
- Ulrika Bergström
- a Division of CBRN Defense and Security , Swedish Defense Research Agency , Umeå , Sweden
| | | | | | | |
Collapse
|
24
|
Sturm R. Theoretical deposition of carcinogenic particle aggregates in the upper respiratory tract. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:25. [PMID: 25332969 DOI: 10.3978/j.issn.2305-5839.2013.07.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 07/19/2013] [Indexed: 11/14/2022]
Abstract
BACKGROUND Numerous particles suspended in the atmosphere are composed of smaller particular components that form aggregates with highly irregular shape. Such aggregates, among which dusts and soot are the most prominent examples, may be taken up into the respiratory tract and, in the worst case, initiate a malignant transformation of lung cells. METHODS Particle aggregates were theoretically modelled by using small spheres with equal diameters (1 nm) and arranging them randomly. This procedure resulted in the generation of various aggregate shapes (chain-like, loose, compact), for which essential parameters such as dynamic shape factors, χ, and aerodynamic diameters, dae , were computed. Deposition of aggregates consisting of 10, 50, 100, and 1,000 nano-spheres was simulated for the uppermost parts of the human respiratory system (extrathoracic region and airway generation 0 to 4), thereby distinguishing between sitting and light-work breathing as well as between nasal and oral inhalation. RESULTS Based upon the modelling results, aggregate deposition in the human respiratory system can be described as a function of (I) aerodynamic diameter; (II) inhaled particle position within the airway system; and (III) breathing conditions. Therefore, highest deposition values were obtained for nano-scale aggregates (<10 nm), whereas larger aggregates exhibited slightly to significantly reduced deposition probabilities. Extrathoracic regions and uppermost bronchi (generations 0 to 1) were marked by most effective particle capture. Any increase of inhaled air volumes and reduction of breathing times resulted in an enhancement of deposition probabilities of larger particles. CONCLUSIONS Based on the results derived from this study it may be concluded that small particle aggregates are accumulated in the uppermost compartments of the human respiratory tract, where they may unfold their unwholesome potential. In the case of carcinogenic particles being stored in epithelial cells for a longer time span, malignant transformations starting with the formation of cancerous cells and ending with the growth of a tumour have to be assumed.
Collapse
Affiliation(s)
- Robert Sturm
- Brunnleitenweg 41, 5061 Elsbethen, Salzburg, Austria
| |
Collapse
|
25
|
Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IMF, Momoli F, Krewski D. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 2014; 44 Suppl 4:1-80. [PMID: 25233067 PMCID: PMC4997813 DOI: 10.3109/10408444.2014.934439] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+2) and Al(H2O)6 (+3)] that after complexation with O2(•-), generate Al superoxides [Al(O2(•))](H2O5)](+2). Semireduced AlO2(•) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (•-) and OH(•). Thus, it is the Al(+3)-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.
Collapse
Affiliation(s)
- Calvin C. Willhite
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
| | | | - Robert A. Yokel
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | - Thomas M. Wisniewski
- Departments of Neurology, Psychiatry and Pathology, New York University School of Medicine, New York City, New York, USA
| | - Ian M. F. Arnold
- Occupational Health Program, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Franco Momoli
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|