1
|
Hoisington AJ, Stearns-Yoder KA, Kovacs EJ, Postolache TT, Brenner LA. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Environ Health Rep 2024; 11:168-183. [PMID: 38457036 DOI: 10.1007/s40572-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits. RECENT FINDINGS Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed. Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA.
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA.
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 45333, USA.
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Affairs Research Service, RMR VAMC, Aurora, CO, 80045, USA
| | - Teodor T Postolache
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
2
|
Mattie DR, Wong BA, Mumy KL, McInturf SM, Shafer LM, Allen R, Edwards JT, Sibomana I, Sterner TR. Toxicity and human health assessment of an alcohol-to-jet (ATJ) synthetic kerosene developed under an international agreement with Sweden. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:263-282. [PMID: 36883736 DOI: 10.1080/15287394.2023.2186295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Alcohol-to-jet (ATJ) Synthetic Kerosene with Aromatics (SKA) fuels are produced by dehydration and refining of alcohol feed stocks. ATJ SKA fuel known as SB-8 was developed by Swedish Biofuels as a cooperative agreement between Sweden and AFRL/RQTF. SB-8 including standard additives was tested in a 90-day toxicity study with male and female Fischer 344 rats exposed to 0, 200, 700, or 2000 mg/m3 fuel in an aerosol/vapor mixture for 6 hr/day, 5 days/week. Aerosols represented 0.04 and 0.84% average fuel concentration in 700 or 2000 mg/m3 exposure groups. Examination of vaginal cytology and sperm parameters found no marked changes in reproductive health. Neurobehavioral effects were increased rearing activity (motor activity) and significantly decreased grooming (functional observational battery) in 2000 mg/m3 female rats. Hematological changes were limited to elevated platelet counts in 2000 mg/m3 exposed males. Minimal focal alveolar epithelial hyperplasia with increased number of alveolar macrophages was noted in some 2000 mg/m3 males and one female rat. Additional rats tested for genotoxicity by micronucleus (MN) formation did not detect bone marrow cell toxicity or alterations in number of MN; SB-8 was not clastogenic. Inhalation results were similar to effects reported for JP-8. Both JP-8 and SB fuels were moderately irritating under occlusive wrapped conditions but slightly irritating under semi-occlusion. Exposure to SB-8, alone or as 50:50 blend with petroleum-derived JP-8, is not likely to enhance adverse human health risks in the military workplace.
Collapse
Affiliation(s)
- D R Mattie
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson AFB, OH, USA
| | - B A Wong
- Oak Ridge Institute for Science and Education, Wright-Patterson AFB, OH, USA
- Naval Medical Research Unit Dayton, Wright-Patterson AFB, OH, USA
| | - K L Mumy
- Naval Medical Research Unit Dayton, Wright-Patterson AFB, OH, USA
| | - S M McInturf
- Naval Medical Research Unit Dayton, Wright-Patterson AFB, OH, USA
| | - L M Shafer
- Air Force Research Laboratory, Aerospace Systems Directorate (AFRL/RQTF), Wright-Patterson AFB, OH, USA
- University of Dayton Research Institute, Dayton, OH, USA
| | - R Allen
- Air Force Research Laboratory, Aerospace Systems Directorate (AFRL/RQTF), Wright-Patterson AFB, OH, USA
| | - J T Edwards
- Air Force Research Laboratory, Aerospace Systems Directorate (AFRL/RQTF), Wright-Patterson AFB, OH, USA
| | - I Sibomana
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson AFB, OH, USA
| | - T R Sterner
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson AFB, OH, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson AFB, OH, USA
| |
Collapse
|
3
|
Sterner TR, Covington TR, Mattie DR. Complex Mixtures: Array PBPK Modeling of Jet Fuel Components. TOXICS 2023; 11:187. [PMID: 36851061 PMCID: PMC9964161 DOI: 10.3390/toxics11020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
An array physiologically-based pharmacokinetic (PBPK) model represents a streamlined method to simultaneously quantify dosimetry of multiple compounds. To predict internal dosimetry of jet fuel components simultaneously, an array PBPK model was coded to simulate inhalation exposures to one or more selected compounds: toluene, ethylbenzene, xylenes, n-nonane, n-decane, and naphthalene. The model structure accounts for metabolism of compounds in the lung and liver, as well as kinetics of each compound in multiple tissues, including the cochlea and brain regions associated with auditory signaling (brainstem and temporal lobe). The model can accommodate either diffusion-limited or flow-limited kinetics (or a combination), allowing the same structure to be utilized for compounds with different characteristics. The resulting model satisfactorily simulated blood concentration and tissue dosimetry data from multiple published single chemical rat studies. The model was then utilized to predict tissue kinetics for the jet fuel hearing loss study (JTEH A, 25:1-14). The model was also used to predict rat kinetic comparisons between hypothetical exposures to JP-8 or a Virent Synthesized Aromatic Kerosene (SAK):JP-8 50:50 blend at the occupational exposure limit (200 mg/m3). The array model has proven useful for comparing potential tissue burdens resulting from complex mixture exposures.
Collapse
Affiliation(s)
- Teresa R. Sterner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
- Air Force Research Laboratory, 711HPW/RHBAF, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
| | - Tammie R. Covington
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
- Air Force Research Laboratory, 711HPW/RHBAF, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
| | - David R. Mattie
- Air Force Research Laboratory, 711HPW/RHBAF, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
| |
Collapse
|
4
|
Guthrie OW. Abnormal neural adaptation consequent to combined exposure to jet fuel and noise. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:671-684. [PMID: 35469543 DOI: 10.1080/15287394.2022.2069064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A fundamental property of first-order sensory neurons is the ability to alter their response properties as a function of change in the statistical parameters of an input signal. Such neural adaptation shapes the performance features of contiguous neural circuits that ultimately drive sensory discrimination. The current study focused on whether combined exposure to jet fuel and noise might alter the capacity of the auditory nerve to adapt to stimulus presentation speed. Young hooded Long-Evans 4-5 weeks old male rats were grouped and used in the current experiment. One group was exposed via inhalation to 1000 mg/m3 of jet propulsion fuel for 6 hr per day, 5 days per week for 4 weeks. Another group was exposed to a 5.5-11.3 kHz band-pass noise at 85 dB SPL for 6 hr per day, 5 days per week for 4 weeks. An additional group was simultaneously exposed to both jet fuel and noise. An age-matched group served as control and was not exposed to either jet fuel or noise. After experimental exposures, animals were given 4 weeks to recover and then assessed for neural adaptation. Both slow and fast rectangular voltage pulses were employed to elicit neuroelectric activity from the animals. Data demonstrated significant neural adaptation (1.46 μV shift) among controls, where neural activity decreased as the stimulus presentation speed rose from 10 to 100 per sec. This effect might also be observed in animals in the jet fuel treated and rats in the noise-exposed group. However, animals who were simultaneously exposed to both jet fuel and noise failed to exhibit neural adaptation. This abnormality appeared to be masked because independent slow and fast stimuli produced similar neural activity between controls and rats exposed to both jet fuel and noise. Therefore, neural adaptation assays may further be developed to unmask silent neurotoxicity consequent to physiochemical exposures.
Collapse
Affiliation(s)
- O'Neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
5
|
Guthrie OW, Wong BA, McInturf SM, Mattie DR. Degenerate brainstem circuitry after combined physiochemical exposure to jet fuel and noise. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:175-183. [PMID: 34913848 DOI: 10.1080/15287394.2021.1980166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Degenerate neural circuits exhibit "different" circuit properties yet produce similar circuit outcomes (many-to-one) which ensures circuit robustness and complexity. However, neuropathies may hijack degeneracy to yield robust and complex pathological circuits. The aim of the current study was to test the hypothesis that physiochemical exposure to combined jet fuel and noise might induce degeneracy in the brainstem. The auditory brainstem of pigmented rats was used as a model system. The animals were randomized into the following experimental groups: Fuel+Noise, fuel-only, noise-only, and control. Ascending volume conductance from various auditory brainstem regions were evaluated simultaneously with peripheral nervous system (PNS) input to brainstem circuitry. Data demonstrated normal PNS inputs for all groups. However, the Fuel+Noise exposure group produced different caudal brainstem circuit properties while rostral brainstem circuitry initiated outputs that were similar to that of control. This degenerative effect was specific to Fuel+Noise exposure, since neither noise-alone or fuel-alone produced the same result. Degeneracy in the auditory brainstem is consistent with perceptual abnormalities, such as poor speech discrimination (hear but not understand), tinnitus (ringing in the ear), hyperacusis (hypersensitivity to even low-level sound), and loudness intolerance. Therefore, a potential consequence of Fuel+Noise exposure among military and civilian populations may be evidenced as increased rates of super-threshold auditory perceptual abnormalities. This is particularly important because to date, the ototoxic profile of Fuel+Noise exposure has remained unresolved.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| | - Brian A Wong
- Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, OH, USA
- Oak Ridge Institute for Science and Education (Orise), Oak Ridge, TN, USA
| | - Shawn M McInturf
- Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, OH, USA
| | - David R Mattie
- 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| |
Collapse
|
6
|
Dreisbach L, Murphy S, Arevalo R, Schlocker C, Miller T, Guthrie OW. Is jet fuel exposure associated with central auditory nervous system difficulties: An exploratory study in military personnel. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2027. [PMID: 35364904 DOI: 10.1121/10.0009845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Central auditory nervous system dysfunction (CANSD) can manifest as hearing difficulty in the absence of audiometric abnormalities. Effects of noise or jet fuel exposure on the CANS are documented in animal models and humans. This study screened military personnel using the modified Amsterdam Inventory for Auditory Disability (mAIAD) to assess whether concurrent jet fuel and noise (JFN) exposures potentiate central auditory difficulties compared to noise only exposures. A total of 48 age- and sex-matched participants were recruited: 24 military bulk fuel specialists (JFN) and 24 military personnel without jet fuel exposure. All participants completed the mAIAD, the Noise Exposure Questionnaire, and basic audiological testing. Results revealed non-significant differences in pure-tone thresholds between groups, but the JFN group had higher noise exposures. Additionally, the JFN group revealed consistently lower mAIAD scores compared to the noise only group. Interestingly, a JFN stratified subgroup reporting more listening difficulty exhibited statistically significant lower mAIAD scores in the speech intelligibility in noise subdomain. These preliminary data suggest that jet fuel exposure may potentiate noise-induced CANSD, such as speech-in-noise difficulties. Such difficulties may be more prominent among specific military personnel with combined exposures. Hearing conservation programs could add CANSD screening by use of the mAIAD.
Collapse
Affiliation(s)
- Laura Dreisbach
- School of Speech, Language and Hearing Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1518, USA
| | - Sara Murphy
- Navy Medicine Readiness and Training Command San Diego (NMRTC SD), 34800 Bob Wilson Drive, San Diego, California 92134, USA
| | - Reginald Arevalo
- School of Speech, Language and Hearing Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1518, USA
| | - Caroline Schlocker
- Navy Medicine Readiness and Training Command San Diego (NMRTC SD), 34800 Bob Wilson Drive, San Diego, California 92134, USA
| | - Tanner Miller
- Navy Medicine Readiness and Training Command San Diego (NMRTC SD), 34800 Bob Wilson Drive, San Diego, California 92134, USA
| | - O'neil Winston Guthrie
- Department of Communication Sciences and Disorders, Northern Arizona University, 208 E. Pine Knoll Drive, Flagstaff, Arizona 86011, USA
| |
Collapse
|
7
|
Guthrie OW, Bhatt IS. Nondeterministic nature of sensorineural outcomes following noise trauma. Biol Open 2021; 10:272549. [PMID: 34668520 PMCID: PMC8543023 DOI: 10.1242/bio.058696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Over 1.1 billion individuals are at risk for noise induced hearing loss yet there is no accepted therapy. A long history of research has demonstrated that excessive noise exposure will kill outer hair cells (OHCs). Such observations have fueled the notion that dead OHCs underlie hearing loss. Therefore, previous and current therapeutic approaches are based on preventing the loss of OHCs. However, the relationship between OHC loss and hearing loss is at best a modest correlation. This suggests that in addition to the death of OHCs, other mechanisms may regulate the type and degree of hearing loss. In the current study, we tested the hypothesis that permanent noise-induced-hearing loss is consequent to additional mechanisms beyond the noise dose and the death of OHCs. Hooded male rats were randomly divided into noise and control groups. Morphological and physiological assessments were conducted on both groups. The combined results suggest that beyond OHC loss, the surviving cochlear elements shape sensorineural outcomes, which can be nondeterministic. These findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead OHCs. Summary: The current findings provide the basis for individualized ototherapeutics that manipulate surviving cellular elements in order to bias cochlear function towards normal hearing even in the presence of dead cells.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Department of Communication Sciences & Disorders, Northern Arizona University, Flagstaff, AZ 86011, USA.,Cell & Molecular Pathology Laboratory, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ishan S Bhatt
- Audiogenomics Research Laboratory, Department of Communication Sciences and Disorders, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Morata TC, Hungerford M, Konrad-Martin D. Potential Risks to Hearing Functions of Service Members From Exposure to Jet Fuels. Am J Audiol 2021; 30:922-927. [PMID: 34407375 DOI: 10.1044/2021_aja-20-00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose Several military occupations, particularly those within the U.S. Air Force, require working with or around jet fuels. Jet fuels contain components that are known to affect central nervous function, yet effects of these fuels on auditory function, specifically auditory processing of sound, are not well understood at this time. Animal studies have demonstrated that exposure to jet fuels prior to noise exposure can exacerbate the noise exposure's effects, and service members exposed to jet fuels are at risk of noise exposure within their work environments. The purpose of this article was to give a brief synopsis of the evidence on the ototoxic effects due to jet fuel exposure to aid audiologists in their decision making when providing care for populations who are occupationally exposed to fuels or while during military service. Conclusions Exposure to jet fuels impacts central nervous function and, in combination with noise exposure, may have detrimental auditory effects that research has yet to fully explain. Additional longitudinal research is needed to explain the relationships, which have clinical implications for service members and others exposed to jet fuels. In the meantime, audiologists can gain useful information by screening for chemical exposures when obtaining patient case histories. If jet fuel exposure is suspected, the Lifetime Exposure to Noise and Solvents Questionnaire can be used to estimate a noise exposure ranking and identify other potentiating agents such as jet fuel and industrial chemicals. A history of jet fuel exposure should inform the selection of hearing tests in the audiometric evaluation and when devising the treatment plan.
Collapse
Affiliation(s)
- Thais C. Morata
- National Institute for Occupational Safety and Health, Cincinnati, OH
| | - Michelle Hungerford
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| | - Dawn Konrad-Martin
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
9
|
Blair M, Slagley J, Schaal NC. Effect of noise and ototoxicants on developing standard threshold shifts at a U.S. Air Force depot level maintenance facility. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2021; 18:323-333. [PMID: 34100693 DOI: 10.1080/15459624.2021.1922693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noise exposure has traditionally been considered the primary risk factor for hearing loss. However, ototoxicants commonly found in occupational settings could affect hearing loss independently, additively, or synergistically when combined with noise exposures. The purpose of this investigation was to determine the combined effect of metal and solvent ototoxicants, continuous noise, and impulse noise on hearing loss. Noise and ototoxicant exposure and pure-tone audiometry results were analyzed for U.S. Air Force personnel (n = 2,372) at a depot-level aircraft maintenance activity at Tinker Air Force Base, Oklahoma. Eight similar exposure groups based on combinations of ototoxicant and noise exposure were created including: (1) Continuous noise (reference group); (2) Continuous noise + Impulse noise; (3) Metal exposures + Continuous noise; (4) Metal exposures + Continuous noise + Impulse noise; (5) Solvent exposure + Continuous noise; (6) Solvent exposures + Continuous noise + Impulse noise; (7) Metal exposure + Solvent exposures + Continuous noise; and (8) Metal exposure + Solvent exposures + Continuous noise + Impulse noise. Hearing loss was assessed at center octave band frequencies of 500-6,000 Hz and using National Institute for Occupational Safety and Health Standard Threshold Shift (STS) criteria. Hearing changes were significantly worse at 2,000 Hz in the Metal exposure + Solvent exposure + Continuous noise group compared to the Continuous noise only reference group (p = 0.023). The Metal exposure + Solvent exposure + Continuous noise group had a significantly greater relative risk (RR) of 2.44; 95% CI [1.24, 4.83] for developing an STS at 2,000 Hz. While not statistically significant, the Solvent exposure + Continuous noise group had a RR of 2.32; 95%CI [1.00, 5.34] for developing an STS at 1,000 Hz. These results indicate that noise exposure may dominate hearing loss at ≥3,000 Hz while combined effects of concomitant exposure to ototoxic substances and noise are only noticeable at ≤2,000 Hz. These results also suggest combined exposures to ototoxicants and noise presents a greater hearing loss risk than just noise.
Collapse
Affiliation(s)
- Marc Blair
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Ohio
| | - Jeremy Slagley
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Ohio
| | - N Cody Schaal
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Ohio
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton, Wright-Patterson AFB, Ohio
| |
Collapse
|
10
|
Karanikas N, Foster C, Beltran Hernandez A, Harvey A, Targal O, Horswill N. Conventional and Alternative Aviation Fuels: Occupational Exposure and Health Effects. ACS CHEMICAL HEALTH & SAFETY 2021. [DOI: 10.1021/acs.chas.0c00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nektarios Karanikas
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Cherry Foster
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Adolfo Beltran Hernandez
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Alice Harvey
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Ozan Targal
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| | - Nathan Horswill
- School of Public Health & Social Work, Faculty of Health, Queensland University of Technology, Victoria Park Road, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
11
|
Ben Maamar M, Nilsson E, Thorson JLM, Beck D, Skinner MK. Epigenome-wide association study for transgenerational disease sperm epimutation biomarkers following ancestral exposure to jet fuel hydrocarbons. Reprod Toxicol 2020; 98:61-74. [PMID: 32905848 PMCID: PMC7736201 DOI: 10.1016/j.reprotox.2020.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022]
Abstract
Jet fuel hydrocarbons is the generic name for aviation fuels used in gas-turbine engine powered aircraft. The Deepwater Horizon oil rig explosion created the largest environmental disaster in U.S. history, and the second largest oil spill in human history with over 800 million liters of hydrocarbons released into the Gulf of Mexico over a period of 3 months. Due to the widespread use of jet fuel hydrocarbons, this compound mixture has been recognized as the single largest chemical exposure for military personnel. Previous animal studies have demonstrated the ability of jet fuel (JP-8) exposure to promote the epigenetic transgenerational inheritance of disease susceptibility in subsequent generations. The diseases observed include late puberty, kidney, obesity and multiple disease pathologies. The current study is distinct and was designed to identify potential sperm DNA methylation biomarkers for specific transgenerational diseases. Observations show disease specific differential DNA methylation regions (DMRs) called epimutations in the transgenerational F3 generation great-grand-offspring male rats ancestrally exposed to jet fuel. The potential epigenetic DMR biomarkers were identified for late puberty, kidney, obesity, and multiple diseases, and found to be predominantly disease specific. These disease specific DMRs have associated genes that were previously shown to be linked with each of these specific diseases. Therefore, the germline (i.e. sperm) has environmentally induced ancestrally derived epimutations that have the potential to transgenerationally transmit disease susceptibilities to subsequent generations. Epigenetic biomarkers for specific diseases could be developed as medical diagnostics to facilitate clinical management of disease, and allow preventative medicine therapeutics.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Jennifer L M Thorson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
12
|
Tepe V, Papesh M, Russell S, Lewis MS, Pryor N, Guillory L. Acquired Central Auditory Processing Disorder in Service Members and Veterans. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:834-857. [PMID: 32163310 DOI: 10.1044/2019_jslhr-19-00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose A growing body of evidence suggests that military service members and military veterans are at risk for deficits in central auditory processing. Risk factors include exposure to blast, neurotrauma, hazardous noise, and ototoxicants. We overview these risk factors and comorbidities, address implications for clinical assessment and care of central auditory processing deficits in service members and veterans, and specify knowledge gaps that warrant research. Method We reviewed the literature to identify studies of risk factors, assessment, and care of central auditory processing deficits in service members and veterans. We also assessed the current state of the science for knowledge gaps that warrant additional study. This literature review describes key findings relating to military risk factors and clinical considerations for the assessment and care of those exposed. Conclusions Central auditory processing deficits are associated with exposure to known military risk factors. Research is needed to characterize mechanisms, sources of variance, and differential diagnosis in this population. Existing best practices do not explicitly consider confounds faced by military personnel. Assessment and rehabilitation strategies that account for these challenges are needed. Finally, investment is critical to ensure that Veterans Affairs and Department of Defense clinical staff are informed, trained, and equipped to implement effective patient care.
Collapse
Affiliation(s)
- Victoria Tepe
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- The Geneva Foundation, Tacoma, WA
| | - Melissa Papesh
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Shoshannah Russell
- Walter Reed National Military Medical Center, Bethesda, MD
- Henry Jackson Foundation, Bethesda, MD
| | - M Samantha Lewis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
- School of Audiology, Pacific University, Hillsboro, OR
| | - Nina Pryor
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH
| | - Lisa Guillory
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia
| |
Collapse
|
13
|
Fuente A, Hickson L, Morata TC, Williams W, Khan A, Fuentes-Lopez E. Jet fuel exposure and auditory outcomes in Australian air force personnel. BMC Public Health 2019; 19:675. [PMID: 31151392 PMCID: PMC6544957 DOI: 10.1186/s12889-019-7038-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animal data suggest that jet fuels such as JP-8 are associated with hearing deficits when combined with noise and that the effect is more pronounced than with noise exposure alone. Some studies suggest peripheral dysfunction while others suggest central auditory dysfunction. Human data are limited in this regard. The aim of this study was to investigate the possible chronic adverse effects of JP-8 combined with noise exposure on the peripheral and central auditory systems in humans. METHODS Fifty-seven participants who were current personnel from the Royal Australian Air Force were selected. Based on their levels of exposure to jet fuels, participants were divided into three exposure groups (low, moderate, high). Groups were also categorised based on their noise exposure levels (low, moderate, high). All participants were evaluated by tympanometry, pure-tone audiometry (1-12 kHz), distortion product otoacoustic emissions (DPOAEs), auditory brainstem response (ABR), words-in-noise, compressed speech, dichotic digit test, pitch pattern sequence test, duration pattern sequence test and adaptive test of temporal resolution. All auditory tests were carried out after the participants were away from the Air Force base for a minimum of two weeks, thus two weeks without jet fuel and noise exposure. RESULTS Jet fuel exposure was significantly associated with hearing thresholds at 4 and 8 kHz; average hearing thresholds across frequencies in the better ear; DPOAEs at 2.8, 4 and 6 kHz; ABR wave V latency in the right ear; compressed speech and words-in-noise. Further analyses revealed that participants with low exposure level to jet fuels showed significantly better results for the aforementioned procedures than participants with moderate and high exposure levels. All results were controlled for the covariates of age and noise exposure levels. CONCLUSIONS The results suggest that jet fuel exposure, when combined with noise exposure, has an adverse effect on audibility in humans. Taking all the test results into consideration, jet fuel exposure combined with noise exposure specifically seems to affect the peripheral hearing system in humans.
Collapse
Affiliation(s)
- Adrian Fuente
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia. .,Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada.
| | - Louise Hickson
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Thais C Morata
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | - Asaduzzaman Khan
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Eduardo Fuentes-Lopez
- Carrera de Fonoaudiología, Departamento de Ciencias de la Salud, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Roggia SM, de França AG, Morata TC, Krieg E, Earl BR. Auditory system dysfunction in Brazilian gasoline station workers. Int J Audiol 2019; 58:484-496. [PMID: 31017499 DOI: 10.1080/14992027.2019.1597286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: To examine the auditory system of Brazilian gasoline station workers using an extensive audiological test battery. Design: This was a cross-sectional study. The audiological evaluation included a questionnaire, pure-tone audiometry, acoustic immittance tests, transient-evoked otoacoustic emissions (TEOAEs), distortion product otoacoustic emissions (DPOAEs), auditory brainstem response (ABR) and P300 auditory-evoked potentials. Study sample: A total of 77 Brazilian gasoline station workers were evaluated, and their results were compared with those of 36 participants who were not exposed to chemicals or noise at work. The gasoline station employees worked in 18 different gas stations, and the noise area measurements from all gas stations revealed time-weighted averages below 85 dBA. Results: Of the 77 gasoline station workers evaluated, 67.5% had audiometric results within the normal range, but 59.7% reported difficulties in communication in noisy places. Gasoline station workers showed significantly poorer results than non-exposed control participants in one or more conditions of each of the audiological tests used, except P300. Conclusions: The results suggest that the gasoline station workers have both peripheral and central auditory dysfunctions that could be partly explained by their exposure to gasoline.
Collapse
Affiliation(s)
- Simone Mariotti Roggia
- a Department of Audiology and Speech Therapy , Federal University of Santa Catarina , Florianopolis , Brazil
| | | | - Thais C Morata
- c National Institute for Occupational Safety and Heath , Cincinnati , OH , USA
| | - Edward Krieg
- c National Institute for Occupational Safety and Heath , Cincinnati , OH , USA
| | - Brian R Earl
- d Department of Communication Sciences and Disorders , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
15
|
Carlson K, Schacht J, Neitzel RL. Assessing ototoxicity due to chronic lead and cadmium intake with and without noise exposure in the mature mouse. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1041-1057. [PMID: 30239325 PMCID: PMC6349363 DOI: 10.1080/15287394.2018.1521320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 05/27/2023]
Abstract
Exposure to heavy metals may lead to hearing impairment. However, experimental studies have not explored this issue with and without noise exposure in mature animals with environmentally relevant doses. The aim of this study was to investigate ototoxicity produced by lead (Pb) and cadmium (Cd) and noise, singly and in combination, in the adult CBA/CaJ mouse. Metals were delivered via drinking water (0.03 mM, 1 mM, and 3 mM Pb; or 30, 100, and 300 μM Cd) for 12 weeks, resulting in environmentally- and occupationally relevant mean (± standard deviations) blood levels of Pb (2.89 ± 0.44, 38.5 ± 4.9, and 60.1 ± 6.6 μg/dl, respectively) and Cd (1.3 ± 0.23, 6.37 ± 0.87, 27.2 ± 4.1 μg/L, respectively). Metal treatment was also combined with a noise exposure consisting of a 105 dB broadband (2-20 kHz) stimulus for 2 hr or a sham exposure. Auditory performance was determined by comparing auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) at baseline and after 11 weeks of metal treatment. Metal-exposed animals did not develop significant auditory deficits and did not exhibit morphological damage to cochlear hair cells. In contrast, noise-exposed animals, including those exposed to combinations of metals and noise, demonstrated significant hair cell loss, reduced DPOAE amplitudes, and ABR threshold shifts of 42.2 ± 13 dB at 32 kHz (105 dB noise alone). No significant potentiation or synergistic effects were found in groups exposed to multiple agents. This study establishes a highly reproducible adult mouse model that may be used to evaluate a variety of environmental exposure mixtures.
Collapse
Affiliation(s)
- Krystin Carlson
- Department of Environmental Health Sciences Department, University of Michigan, Ann Arbor, USA
| | - Jochen Schacht
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, USA
| | - Richard L Neitzel
- Department of Environmental Health Sciences Department, University of Michigan, Ann Arbor, USA
| |
Collapse
|
16
|
Grobe N, Narayanan L, Brown DN, Law ST, Sibomana I, Shiyanov P, Reo NV, Hack CE, Sterner TR, Mattie DR. Lipid, water, and protein composition to facilitate kinetic modeling of the auditory pathway. Toxicol Mech Methods 2018; 29:53-59. [PMID: 30084267 DOI: 10.1080/15376516.2018.1508263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Environments combining JP-8 jet fuel exposure with heightened ambient noise may accelerate hearing loss induced by noise. To reduce animal use and facilitate kinetic modeling of this military aviation fuel, tissue-specific parameters are required, including water, protein, and lipid content. However, tissues involved in hearing, including cochlea, brainstem, frontal, and temporal lobe, have not been characterized before. Therefore, water content was determined by lyophilization of rat auditory tissues and the protein of the freeze dried remainder was quantified using a bicinchoninic acid assay. Lipids were extracted from fresh-frozen rat auditory tissues and separated into neutral lipids, free fatty acids, neutral phospholipids, and acidic phospholipids using solid phase extraction. Phospholipid fractions were confirmed by 31 P nuclear magnetic resonance analysis showing distinct phospholipid profiles. Lipid content in reference tissues, such as kidney and adipose, confirmed literature values. For the first time, lipid content in the rat auditory pathway was determined showing that total lipid content was lowest in cochlea and highest in brainstem compared with frontal and temporal lobes. Auditory tissues displayed distinct lipid fraction profiles. The information on water, protein, and lipid composition is necessary to validate algorithms used in mathematical models and predict partitioning of chemicals of future interest into these tissues. This research may reduce the use of animals to measure partition coefficients for prospective physiological models.
Collapse
Affiliation(s)
- Nadja Grobe
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA
| | - Latha Narayanan
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Dominique N Brown
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA
| | - Sarah T Law
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Isaie Sibomana
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,c Department of Biochemistry and Molecular Biology Magnetic Resonance Laboratory, Boonshoft School of Medicine , Wright State University , Dayton , OH , USA
| | - Pavel Shiyanov
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Nicholas V Reo
- c Department of Biochemistry and Molecular Biology Magnetic Resonance Laboratory, Boonshoft School of Medicine , Wright State University , Dayton , OH , USA
| | - C Eric Hack
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - Teresa R Sterner
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA.,b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson Air Force Base , OH , USA
| | - David R Mattie
- a Molecular Mechanisms Branch, Human Centered ISR Division , Airman Systems Directorate, 711th Human Performance Wing (711HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson Air Force Base , OH , USA
| |
Collapse
|
17
|
Fife TD, Robb MJA, Steenerson KK, Saha KC. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel. Front Neurol 2018; 9:351. [PMID: 29867750 PMCID: PMC5964212 DOI: 10.3389/fneur.2018.00351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8) fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.
Collapse
Affiliation(s)
- Terry D Fife
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | | | - Kamala C Saha
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
18
|
Rohan JG, McInturf SM, Miklasevich MK, Gut CP, Grimm MD, Reboulet JE, Howard WR, Mumy KL. Comparative electrophysiological evaluation of hippocampal function following repeated inhalation exposures to JP-8, Jet A, JP-5, and the synthetic Fischer Tropsch fuel. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:314-332. [PMID: 29498600 DOI: 10.1080/15287394.2018.1437097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Exposure to fuels continues to be a concern in both military and general populations. The aim of this study was to examine effects of in vivo rat repeated exposures to different types of jet fuel utilizing microelectrode arrays for comparative electrophysiological (EP) measurements in hippocampal slices. Animals were exposed to increasing concentrations of four jet fuels, Jet Propellant (JP)-8, Jet A, JP-5, or synthetic Fischer Tropsch (FT) fuel via whole-body inhalation for 20 d (6 hr/d, 5 d/week for 28 d) and synaptic transmission as well as behavioral performance were assessed. Our behavioral studies indicated no significant changes in behavioral performance in animals exposed to JP-8, Jet A, or JP-5. A significant deviation in learning pattern during the Morris water maze task was observed in rats exposed to the highest concentration of FT (2000 mg/m3). There were also significant differences in the EP profile of hippocampal neurons from animals exposed to JP-8, Jet A, JP-5, or FT compared to control air. However, these differences were not consistent across fuels or dose dependent. As expected, patterns of EP alterations in brain slices from JP-8 and Jet A exposures were more similar compared to those from JP-5 and FT. Further longitudinal investigations are needed to determine if these EP effects are transient or persistent. Such studies may dictate if and how one may use EP measurements to indicate potential susceptibility to neurological impairments, particularly those that result from inhalation exposure to chemicals or mixtures.
Collapse
Affiliation(s)
- Joyce G Rohan
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
- b Oak Ridge Institute for Science and Education , Oak Ridge , TN
| | - Shawn M McInturf
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
| | - Molly K Miklasevich
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
- c CAMRIS International , Bethesda , MD
| | - Chester P Gut
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
- c CAMRIS International , Bethesda , MD
| | - Michael D Grimm
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
- c CAMRIS International , Bethesda , MD
| | - James E Reboulet
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
- c CAMRIS International , Bethesda , MD
| | - William R Howard
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
| | - Karen L Mumy
- a Naval Medical Research Unit Dayton (NAMRU-D) , Wright-Patterson Air Force Base , Dayton , OH
| |
Collapse
|
19
|
Mattie DR, Sterner TR, Reddy G, Steup DR, Zeiger E, Wagner DJ, Kurtz K, Daughtrey WC, Wong BA, Dodd DE, Edwards JT, Hinz JP. Toxicity and occupational exposure assessment for Fischer-Tropsch synthetic paraffinic kerosene. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:774-791. [PMID: 29985787 DOI: 10.1080/15287394.2018.1490675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/20/2023]
Abstract
Fischer-Tropsch (FT) Synthetic Paraffinic Kerosene (SPK) jet fuel is a synthetic organic mixture intended to augment petroleum-derived JP-8 jet fuel use by the U.S. armed forces. The FT SPK testing program goal was to develop a comparative toxicity database with petroleum-derived jet fuels that may be used to calculate an occupational exposure limit (OEL). Toxicity investigations included the dermal irritation test (FT vs. JP-8 vs. 50:50 blend), 2 in vitro genotoxicity tests, acute inhalation study, short-term (2-week) inhalation range finder study with measurement of bone marrow micronuclei, 90-day inhalation toxicity, and sensory irritation assay. Dermal irritation was slight to moderate. All genotoxicity studies were negative. An acute inhalation study with F344 rats exposed at 2000 mg/m3 for 4 hr resulted in no abnormal clinical observations. Based on a 2-week range-finder, F344 rats were exposed for 6 hr per day, 5 days per week, for 90 days to an aerosol-vapor mixture of FT SPK jet fuel (0, 200, 700 or 2000 mg/m3). Effects on the nasal cavities were minimal (700 mg/m3) to mild (2000 mg/m3); only high exposure produced multifocal inflammatory cell infiltration in rat lungs (both genders). The RD50 (50% respiratory rate depression) value for the sensory irritation assay, calculated to be 10,939 mg/m3, indicated the FT SPK fuel is less irritating than JP-8. Based upon the proposed use as a 50:50 blend with JP-8, a FT SPK jet fuel OEL is recommended at 200 mg/m3 vapor and 5 mg/m3 aerosol, in concurrence with the current JP-8 OEL.
Collapse
Affiliation(s)
- David R Mattie
- a Molecular Mechanisms Branch, Human Centered ISR Division, Human Effectiveness Directorate (711 HPW/RHXJ), Air Force Research Laboratory , Wright-Patterson AFB OH
| | - Teresa R Sterner
- b Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) , Wright-Patterson AFB , OH , U.S.A
| | - Gunda Reddy
- c U.S. Army Public Health Center , Aberdeen Proving Grounds , MD , U.S.A
| | | | - Errol Zeiger
- e Errol Zeiger Consulting , Chapel Hill , NC , U.S.A
| | - Dean J Wagner
- f Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson AFB OH
| | - Katherine Kurtz
- g Navy and Marine Corps Public Health Center , Portsmouth , VA , U.S.A
| | | | - Brian A Wong
- f Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson AFB OH
| | - Darol E Dodd
- i Charles River Laboratories , Spencerville , OH , U.S.A
| | - James T Edwards
- j Fuels and Energy Branch, Air Force Research Laboratory , Wright-Patterson AFB , OH , U.S.A
| | - John P Hinz
- k U.S. Air Force School of Aerospace Medicine , Wright-Patterson AFB , OH , U.S.A
| |
Collapse
|
20
|
Carlson K, Neitzel RL. Hearing loss, lead (Pb) exposure, and noise: a sound approach to ototoxicity exploration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:335-355. [PMID: 30663930 PMCID: PMC9903337 DOI: 10.1080/10937404.2018.1562391] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To determine the state of the research on ototoxic properties of Pb, evaluate possible synergistic effects with concurrent noise exposure, and identify opportunities to improve future research, we performed a review of the peer-reviewed literature to identify studies examining auditory damage due to Pb over the past 50 years. Thirty-eight studies (14 animal and 24 human) were reviewed. Of these, 24 suggested potential ototoxicity due to Pb exposure, while 14 found no evidence of ototoxicity. More animal studies are needed, especially those investigating Pb exposure levels that are occupationally and environmentally relevant to humans. Further investigations into potential interactions of Pb in the auditory system with other hazards and compounds that elicit ototoxicity are also needed in animal models. To better assess the effects of Pb exposure on the human auditory system and the possibility of a synergism with noise, future epidemiological studies need to carefully consider and address four main areas of uncertainty: (1) hearing examination and quantification of hearing loss, (2) Pb exposure evaluation, (3) noise exposure evaluation, and (4) the personal characteristics of those exposed. Two potentially confounding factors, protective factors and mixtures of ototoxicants, also warrant further exploration.
Collapse
Affiliation(s)
- Krystin Carlson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, USA
| | - Richard L Neitzel
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, USA
- Corresponding Author -- Richard L. Neitzel: , University of Michigan, Department of Environmental Health Sciences, 1415 Washington Heights 6611 SPH I, Ann Arbor, MI 48109, 734-763-2870
| |
Collapse
|
21
|
Guthrie OW. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system. Exp Cell Res 2017; 359:50-61. [DOI: 10.1016/j.yexcr.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
|
22
|
Background Noise Contributes to Organic Solvent Induced Brain Dysfunction. Neural Plast 2016; 2016:8742725. [PMID: 26885406 PMCID: PMC4739468 DOI: 10.1155/2016/8742725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.
Collapse
|