1
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
2
|
Rahman SM, Lan J, Kaeli D, Dy J, Alshawabkeh A, Gu AZ. Machine learning-based biomarkers identification from toxicogenomics - Bridging to regulatory relevant phenotypic endpoints. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127141. [PMID: 34560480 PMCID: PMC9628282 DOI: 10.1016/j.jhazmat.2021.127141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 05/30/2023]
Abstract
One of the major challenges in realization and implementations of the Tox21 vision is the urgent need to establish quantitative link between in-vitro assay molecular endpoint and in-vivo regulatory-relevant phenotypic toxicity endpoint. Current toxicomics approach still mostly rely on large number of redundant markers without pre-selection or ranking, therefore, selection of relevant biomarkers with minimal redundancy would reduce the number of markers to be monitored and reduce the cost, time, and complexity of the toxicity screening and risk monitoring. Here, we demonstrated that, using time series toxicomics in-vitro assay along with machine learning-based feature selection (maximum relevance and minimum redundancy (MRMR)) and classification method (support vector machine (SVM)), an "optimal" number of biomarkers with minimum redundancy can be identified for prediction of phenotypic toxicity endpoints with good accuracy. We included two case studies for in-vivo carcinogenicity and Ames genotoxicity prediction, using 20 selected chemicals including model genotoxic chemicals and negative controls, respectively. The results suggested that, employing the adverse outcome pathway (AOP) concept, molecular endpoints based on a relatively small number of properly selected biomarker-ensemble involved in the conserved DNA-damage and repair pathways among eukaryotes, were able to predict both Ames genotoxicity endpoints and in-vivo carcinogenicity in rats. A prediction accuracy of 76% with AUC = 0.81 was achieved while predicting in-vivo carcinogenicity with the top-ranked five biomarkers. For Ames genotoxicity prediction, the top-ranked five biomarkers were able to achieve prediction accuracy of 70% with AUC = 0.75. However, the specific biomarkers identified as the top-ranked five biomarkers are different for the two different phenotypic genotoxicity assays. The top-ranked biomarkers for the in-vivo carcinogenicity prediction mainly focused on double strand break repair and DNA recombination, whereas the selected top-ranked biomarkers for Ames genotoxicity prediction are associated with base- and nucleotide-excision repair The method developed in this study will help to fill in the knowledge gap in phenotypic anchoring and predictive toxicology, and contribute to the progress in the implementation of tox 21 vision for environmental and health applications.
Collapse
Affiliation(s)
- Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - David Kaeli
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Jennifer Dy
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA; School of Civil and Environmental Engineering, Cornell University, 263 Hollister Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Joo SJ, Gautam R, Lee J, Kim H, Yang S, Jo J, Acharya M, Maharjan A, Kim Y, Lim YM, Kim C, Kim H, Heo Y. Prediction of the skin sensitization potential of polyhexamethylene guanidine phosphate, oligo(2-(2-ethoxy)ethoxyethyl) guanidinium chloride, triclosan, and mixtures of these compounds with the excipient propylene glycol through the local lymph node assay: BrdU-FCM. Toxicol Ind Health 2019; 35:638-646. [DOI: 10.1177/0748233719884853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The guanidine family of antimicrobial agents, which includes polyhexamethylene guanidine phosphate (PHMG) and oligo(2-(2-ethoxy)ethoxyethyl) guanidinium chloride (PGH), and chlorophenol biocidal chemicals such as 2,4,4′-trichloro-2′-hydroxydiphenyl ether (triclosan) are used in various occupational and environmental biocidal applications. The excipient propylene glycol (PG) is used to dissolve the active ingredients. The skin sensitization (SS) potential of these substances has not been systemically investigated and is still debated. Moreover, mixtures of PHMG, PGH, or triclosan with PG have not been evaluated for SS potency. An in vivo assay known as the local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) was recently adopted as an alternative testing method and was used to address these issues. Via the LLNA: BrdU-FCM, PHMG, PGH, and triclosan were predicted to be sensitizers, while PG was predicted to be a nonsensitizer. In addition, d-limonene, which is used as a flavoring in various consumer products, was also predicted to be a sensitizer, although no unanimous conclusion has been reached regarding its SS potential. Mixtures of PHMG, PGH, triclosan, or d-limonene with PG at ratios of 9:1, 4:1, and 1:4 (w/w) were all positive in terms of SS potential, indicating that the PG excipient does not influence the SS predictions of these chemicals. Since humans can be occupationally and environmentally exposed to mixtures of excipients with active ingredients, the present study may give insight into further investigations of the SS potentials of various chemical mixtures.
Collapse
Affiliation(s)
- Su-Jeong Joo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - JaeHee Lee
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - HyeonJi Kim
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
- DragonImmuno Inc., Gyeongsan-si, Gyeongbuk, Republic of Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - YeonGyeong Kim
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Yeon-Mi Lim
- Risk Assessment Division, Environmental Health Research Department, Institute of Environmental Research, Incheon, Republic of Korea
| | - ChangYul Kim
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
- DragonImmuno Inc., Gyeongsan-si, Gyeongbuk, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
- DragonImmuno Inc., Gyeongsan-si, Gyeongbuk, Republic of Korea
| |
Collapse
|
4
|
Procházka E, Melvin SD, Escher BI, Plewa MJ, Leusch FD. Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:117006. [PMID: 31755747 PMCID: PMC6927499 DOI: 10.1289/ehp4945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drinking water disinfection inadvertently leads to the formation of numerous disinfection by-products (DBPs), some of which are cytotoxic, mutagenic, genotoxic, teratogenic, and potential carcinogens both in vitro and in vivo. OBJECTIVES We investigated alterations to global gene expression (GE) in nontransformed human small intestine epithelial cells (FHs 74 Int) after exposure to six brominated and two chlorinated DBPs: bromoacetic acid (BAA), bromoacetonitrile (BAN), 2,6-dibromo-p-benzoquinone (DBBQ), bromoacetamide (BAM), tribromoacetaldehyde (TBAL), bromate (BrO3-), trichloroacetic acid (TCAA), and trichloroacetaldehyde (TCAL). METHODS Using whole-genome cDNA microarray technology (Illumina), we examined GE in nontransformed human cells after 4h exposure to DBPs at predetermined equipotent concentrations, identified significant changes in gene expression (p≤0.01), and investigated the relevance of these genes to specific toxicity pathways via gene and pathway enrichment analysis. RESULTS Genes related to activation of oxidative stress-responsive pathways exhibited fewer alterations than expected based on prior work, whereas all DBPs induced notable effects on transcription of genes related to immunity and inflammation. DISCUSSION Our results suggest that alterations to genes associated with immune and inflammatory pathways play an important role in the potential adverse health effects of exposure to DBPs. The interrelationship between these pathways and the production of reactive oxygen species (ROS) may explain the common occurrence of oxidative stress in other studies exploring DBP toxicity. Finally, transcriptional changes and shared induction of toxicity pathways observed for all DBPs caution of additive effects of mixtures and suggest further assessment of adverse health effects of mixtures is warranted. https://doi.org/10.1289/EHP4945.
Collapse
Affiliation(s)
- Erik Procházka
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Environmental Toxicology, Centre for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
| | - Michael J. Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Frederic D.L. Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
5
|
Lee J, Cho A, Gautam R, Kim Y, Shin S, Song E, Kim H, Yang S, Acharya M, Jo J, Maharjan A, Shim I, Kim HM, Kim P, Kim T, Lee J, Kang M, Jeong T, Kim C, Kim H, Heo Y. Prediction of the skin sensitization potential of didecyldimethylammonium chloride and 3,7-dimethyl-2,6-octadienal and mixtures of these compounds with the excipient ethylene glycol through the human Cell Line Activation Test and the Direct Peptide Reactivity Assay. Toxicol Ind Health 2019; 35:507-519. [DOI: 10.1177/0748233719869514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In commercial products such as household deodorants or biocides, didecyldimethylammonium chloride (DDAC) often serves as an antimicrobial agent, citral serves as a fragrance agent, and the excipient ethylene glycol (EG) is used to dissolve the active ingredients. The skin sensitization (SS) potentials of each of these substances are still being debated. Moreover, mixtures of DDAC or citral with EG have not been evaluated for SS potency. The in vitro alternative assay called human Cell Line Activation Test (h-CLAT) and Direct Peptide Reactivity Assay (DPRA) served to address these issues. On three independent runs of h-CLAT, DDAC and citral were predicted to be sensitizers while EG was predicted to be a non-sensitizer and also by the DPRA. Mixtures of DDAC or citral with EG at ratios of 7:3 and 1:4 w/v were all positive by the h-CLAT in terms of SS potential but SS potency was mitigated as the proportion of EG increased. Citral and its EG mixtures were all positive but DDAC and its EG mixtures were all negative by the DPRA, indicating that the DPRA method is not suitable for chemicals with pro-hapten characteristics. Since humans can be occupationally or environmentally exposed to mixtures of excipients with active ingredients, the present study may give insights into further investigations of the SS potentials of various chemical mixtures.
Collapse
Affiliation(s)
- JaeHee Lee
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - AhRang Cho
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Ravi Gautam
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - YeonGyeong Kim
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - SoJung Shin
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - EunSeob Song
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - HyeonJi Kim
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - SuJeong Yang
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - JiHoon Jo
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - IlSeob Shim
- Risk Assessment Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Hyun-Mi Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - PilJe Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - TaeSung Kim
- Korean Center for the Validation of Alternative Methods, National Institute of Food and Drug Safety Evaluation, MFDS, Chungbuk, Republic of Korea
| | - JongKwon Lee
- Korean Center for the Validation of Alternative Methods, National Institute of Food and Drug Safety Evaluation, MFDS, Chungbuk, Republic of Korea
| | - MiJeong Kang
- College of Pharmacy, Yeungnam University, Gyeongbuk, Republic of Korea
| | - TaeCheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongbuk, Republic of Korea
| | - ChangYul Kim
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| |
Collapse
|
6
|
O’Lenick CR, Pleil JD, Stiegel MA, Sobus JR, Wallace MAG. Detection and analysis of endogenous polar volatile organic compounds (PVOCs) in urine for human exposome research. Biomarkers 2019; 24:240-248. [PMID: 30475075 PMCID: PMC10614422 DOI: 10.1080/1354750x.2018.1548031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
Abstract
Background: The human exposome, defined as '…everything that is not the genome', comprises all chemicals in the body interacting with life processes. The exposome drives genes x environment (GxE) interactions that can cause long-term latency and chronic diseases. The exposome constantly changes in response to external exposures and internal metabolism. Different types of compounds are found in different biological media. Objective: Measure polar volatile organic compounds (PVOCs) excreted in urine to document endogenous metabolites and exogenous compounds from environmental exposures. Methods: Use headspace collection and sorbent tube thermal desorption coupled with bench-top gas chromatography-mass spectrometry (GC-MS) for targeted and non-targeted approaches. Identify and categorize PVOCs that may distinguish among healthy and affected individuals. Results: Method is successfully demonstrated to tabulate a series of 28 PVOCs detected in human urine across 120 samples from 28 human subjects. Median concentrations range from below detect to 165 ng/mL. Certain PVOCs have potential health implications. Conclusions: Headspace collection with sorbent tubes is an effective method for documenting PVOCs in urine that are otherwise difficult to measure. This methodology can provide probative information regarding biochemical processes and adverse outcome pathways (AOPs) for toxicity testing.
Collapse
Affiliation(s)
| | - Joachim D. Pleil
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | | | - Jon R. Sobus
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| | - M. Ariel Geer Wallace
- U.S. Environmental Protection Agency, Exposure Methods and Measurements Division, NERL/ORD, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Lionetto MG, Caricato R, Giordano ME. Pollution Biomarkers in Environmental and Human Biomonitoring. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1875318301909010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Environmental pollutants generate harmful conditions for living organisms, including humans. This accounts for the growing interest to early warning tools for detection of adverse biological responses to pollutants in both humans and wildlife. Molecular and cellular biomarkers of pollution meet this requirement. A pollution biomarker is defined as an alteration in a biological response occurring at molecular, cellular or physiological levels which can be related to exposure to or toxic effects of environmental chemicals.Pollution biomarkers have known a growing development in human and environmental biomonitoring representing a valuable tool for early pollutant exposure detection or early effect assessment (exposure/effect biomarkers).The review discusses the recent developments in the use of pollution biomarker in human and environmental biomonitoring and analyzes future perspectives in the application of this tool such as their potentiality for bridging human and environmental issued studies.
Collapse
|
8
|
Lee JK, Kim SH. Correlation between mast cell-mediated allergic inflammation and length of perfluorinated compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:302-313. [PMID: 29482476 DOI: 10.1080/15287394.2018.1440188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Perfluorinated compounds (PFC) have widely been used in numerous applications including clothing, food packaging, and nonstick coating. With the widespread use of PFC, concerns regarding potential adverse health effects in humans and wildlife have increased. In spite of the known PFC-mediated immunotoxiciy, correlation with PFC and allergic inflammation still requires elucidation. The aim of this study was to examine the effect of four types of PFC (perfluoroheptanoic acid [PFHpA], perfluorononanoic acid [PFNA], perfluorodecanoic acid [PFDA], and perfluoroundecanoic acid [PFUnA]) on mast cell-mediated allergic inflammation in the presence of high-affinity immunoglobulin (Ig) E receptor (FcεRI) cross-linking. Among PFC family, long-chain PFDA and PFUnA increased release of histamine and β-hexosaminidase by up-regulation of intracellular calcium levels in IgE-stimulated mast cells. In addition, PFDA and PFUnA enhanced gene expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 by activation of nuclear factor-κB in IgE-stimulated mast cells. In ovalbumin (OVA)-induced model of systemic anaphylaxis in the presence of hypothermia, PFNA, PFDA, and PFUnA exacerbated allergic symptoms accompanied by elevation in serum histamine, TNF-α, IgE, and IgG1. Our data indicate that some PFC aggravated high-affinity IgE receptor (FcεRI)-mediated mast cell degranulation and allergic symptoms. Consequently, the results demonstrated that carbon-chain length of PFC may serve as a factor in allergic inflammation.
Collapse
Affiliation(s)
- Jun-Kyoung Lee
- a Department of Pharmacology, School of Medicine , Kyungpook National University , Daegu Republic of Korea
| | - Sang-Hyun Kim
- a Department of Pharmacology, School of Medicine , Kyungpook National University , Daegu Republic of Korea
| |
Collapse
|
9
|
Pleil JD, Wallace MAG, Stiegel MA, Funk WE. Human biomarker interpretation: the importance of intra-class correlation coefficients (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:161-180. [PMID: 30067478 PMCID: PMC6704467 DOI: 10.1080/10937404.2018.1490128] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Human biomonitoring is the foundation of environmental toxicology, community public health evaluation, preclinical health effects assessments, pharmacological drug development and testing, and medical diagnostics. Within this framework, the intra-class correlation coefficient (ICC) serves as an important tool for gaining insight into human variability and responses and for developing risk-based assessments in the face of sparse or highly complex measurement data. The analytical procedures that provide data for clinical and public health efforts are continually evolving to expand our knowledge base of the many thousands of environmental and biomarker chemicals that define human systems biology. These chemicals range from the smallest molecules from energy metabolism (i.e., the metabolome), through larger molecules including enzymes, proteins, RNA, DNA, and adducts. In additiona, the human body contains exogenous environmental chemicals and contributions from the microbiome from gastrointestinal, pulmonary, urogenital, naso-pharyngeal, and skin sources. This complex mixture of biomarker chemicals from environmental, human, and microbiotic sources comprise the human exposome and generally accessed through sampling of blood, breath, and urine. One of the most difficult problems in biomarker assessment is assigning probative value to any given set of measurements as there are generally insufficient data to distinguish among sources of chemicals such as environmental, microbiotic, or human metabolism and also deciding which measurements are remarkable from those that are within normal human variability. The implementation of longitudinal (repeat) measurement strategies has provided new statistical approaches for interpreting such complexities, and use of descriptive statistics based upon intra-class correlation coefficients (ICC) has become a powerful tool in these efforts. This review has two parts; the first focuses on the history of repeat measures of human biomarkers starting with occupational toxicology of the early 1950s through modern applications in interpretation of the human exposome and metabolic adverse outcome pathways (AOPs). The second part reviews different methods for calculating the ICC and explores the strategies and applications in light of different data structures.
Collapse
Affiliation(s)
- Joachim D. Pleil
- Office of Research and Development, US Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - M. Ariel Geer Wallace
- Office of Research and Development, US Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Matthew A. Stiegel
- Department of Occupational and Environmental Safety, Duke University Medical Center, Durham, NC, USA
| | - William E. Funk
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
10
|
Lee F, Lawrence DA. From Infections to Anthropogenic Inflicted Pathologies: Involvement of Immune Balance. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 21:24-46. [PMID: 29252129 DOI: 10.1080/10937404.2017.1412212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A temporal trend can be seen in recent human history where the dominant causes of death have shifted from infectious to chronic diseases in industrialized societies. Human influences in the current "Anthropocene" epoch are exponentially impacting the environment and consequentially health. Changing ecological niches are suggested to have created health transitions expressed as modifications of immune balance from infections inflicting pathologies in the Holocene epoch (12,000 years ago) to human behaviors inflicting pathologies beginning in the Anthropocene epoch (300 years ago). A review of human immune health and adaptations responding to environmental (biological, chemical, physical, and psychological) stresses, which are influenced by social conditions, emphasize the involvement of fluctuations in immune cell subsets affecting influential gene-environment interactions. The literature from a variety of fields (anthropological, immunological, and environmental) is incorporated to present an expanded perspective on shifts in diseases within the context of immune balance and function and environmental immunology. The influences between historical and contemporary human ecology are examined in relation to human immunity. Several examples of shifts in human physiology and immunity support the premise that increased incidences of chronic diseases are a consequence of human modification of environment and lifestyle. Although the development of better health care and a broader understanding of human health have helped with better life quality and expectancy, the transition of morbidity and mortality rates from infections to chronic diseases is a cause for concern. Combinations of environmental stressors/pollutants and human behaviors and conditions are modulating the immune-neuroendocrine network, which compromises health benefits.
Collapse
Affiliation(s)
- Florence Lee
- a Department of Anthropology , University at Albany , Albany , NY , USA
| | - David A Lawrence
- b Wadsworth Center/New York State Department of Health , Albany , NY , USA
- c Biomedical Sciences and Environmental Health Sciences , University at Albany, School of Public Health , Albany , NY , USA
| |
Collapse
|
11
|
Choi SM, Roh TH, Lim DS, Kacew S, Kim HS, Lee BM. Risk assessment of benzalkonium chloride in cosmetic products. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 21:8-23. [PMID: 29211634 DOI: 10.1080/10937404.2017.1408552] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A risk assessment of benzalkonium chloride (BAC) was conducted based upon its toxicological profile and exposure evaluation. Since 1935, BAC has been used in a wide variety of products such as disinfectants, preservatives, and sanitizers. It is well-established that BAC is not genotoxic nor does it display tumorigenic potential, but safety concerns have been raised in local usage such as for ocular and intranasal applications. The Foundation of Korea Cosmetic Industry Institute (KCII) reported that in a hair conditioner manufactured as a cosmetic or personal product in South Korea, BAC was present at concentrations of 0.5-2%. The systemic exposure dosage (SED) was determined using the above in-use concentrations and a risk assessment analysis was conducted. The Margin of Safety (MOS) values for hair conditioners were calculated to be between 621 and 2,483. The risk of certain personal and cosmetic products was also assessed based upon assumptions that BAC was present at the maximal level of regulation in South Korea and that the maximal amount was used. The MOS values for the body lotion were all above 100, regardless of the application site. Collectively, data indicate that there are no safety concerns regarding use of products that contain BAC under the current concentration restrictions, even when utilized at maximal permitted levels. However, a chronic dermal toxicity study on BAC and comprehensive dermal absorption evaluation needs to be conducted to provide a more accurate prediction of the potential health risks to humans.
Collapse
Affiliation(s)
- Seul Min Choi
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Gyeonggi-Do , Suwon , South Korea
| | - Tae Hyun Roh
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Gyeonggi-Do , Suwon , South Korea
| | - Duck Soo Lim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Gyeonggi-Do , Suwon , South Korea
| | - Sam Kacew
- b McLaughlin Centre for Population Health Risk Assessment , University of Ottawa , Ottawa , ON , Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Gyeonggi-Do , Suwon , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Gyeonggi-Do , Suwon , South Korea
| |
Collapse
|
12
|
Song Y, Evenseth LM, Iguchi T, Tollefsen KE. Release of chitobiase as an indicator of potential molting disruption in juvenile Daphnia magna exposed to the ecdysone receptor agonist 20-hydroxyecdysone. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:954-962. [PMID: 28849998 DOI: 10.1080/15287394.2017.1352215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During arthropod molting, the old exoskeleton is degraded and recycled by the molting fluid. Chitobiase, a major chitinolytic enzyme in the molting fluid, has been widely used as a biomarker to indicate endocrine disruption of molting in arthropods under environmental stress. Although release of chitobiase was extensively studied in organisms exposed to molting-inhibiting chemicals, enzymic association with molting and response of the molting hormone receptor, ecdysone receptor (EcR), is not well understood. The present study was therefore conducted to identify potential linkages between release of chitobiase, molting frequency, and EcR activation in a freshwater crustacean Daphnia magna after short-term (96 hr) exposure to endogenous molting hormone 20-hydroxyecdysone (20E). A suite of bioassays was used for this purpose, including the chitobiase activity, molting frequency, viability, and in vitro EcR activation. Effect concentrations were compared between different assays analyzed. Results showed that exposure to 20E reduced chitobiase release and molting frequency in a concentration-dependent manner. Exposure to as low as 250 nM 20E significantly decreased release of chitobiase after 72 hr exposure, whereas adverse effects on molting frequency and incomplete molting-associated mortality required higher 20E exposure concentrations. The EcR reporter assay further demonstrated that as low as 100 nM 20E may activate EcR in vitro. Data suggest that release of chitobiase may be employed as a sensitive indicator of potential molting disruption in crustaceans after exposure to EcR agonists such as 20E.
Collapse
Affiliation(s)
- You Song
- a Norwegian Institute for Water Research (NIVA) , Gaustadalléen , Oslo , Norway
| | - Linn Mari Evenseth
- b Department of Medical Biology , Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway , Tromsø , Norway
| | - Taisen Iguchi
- c Department of Basic Biology , Faculty of Life Science, SOKENDAI, (Graduate University for Advanced Studies) , Okazaki , Aichi , Japan
- d Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences , Okazaki , Aichi , Japan
| | - Knut Erik Tollefsen
- a Norwegian Institute for Water Research (NIVA) , Gaustadalléen , Oslo , Norway
- e Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU) , Faculty of Environmental Science and Technology, Centre for Environmental Radioactivity (CERAD) , Ås , Norway
| |
Collapse
|
13
|
Stiegel MA, Pleil JD, Sobus JR, Stevens T, Madden MC. Linking physiological parameters to perturbations in the human exposome: Environmental exposures modify blood pressure and lung function via inflammatory cytokine pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:485-501. [PMID: 28696913 PMCID: PMC6089069 DOI: 10.1080/15287394.2017.1330578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human biomonitoring is an indispensable tool for evaluating the systemic effects derived from external stressors including environmental pollutants, chemicals from consumer products, and pharmaceuticals. The aim of this study was to explore consequences of environmental exposures to diesel exhaust (DE) and ozone (O3) and ultimately to interpret these parameters from the perspective of in vitro to in vivo extrapolation. In particular, the objective was to use cytokine expression at the cellular level as a biomarker for physiological systemic responses such as blood pressure and lung function at the systemic level. The values obtained could ultimately link in vivo behavior to simpler in vitro experiments where cytokines are a measured parameter. Human exposures to combinations of DE and O3 and the response correlations between forced exhaled volume in 1 second (FEV1), forced vital capacity (FVC), systolic and diastolic blood pressure (SBP and DBP, respectively), and 10 inflammatory cytokines in blood (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) were determined in 15 healthy human volunteers. Results across all exposures revealed that certain individuals displayed greater inflammatory responses compared to the group and, generally, there was more between-person variation in the responses. Evidence indicates that individuals are more stable within themselves and are more likely to exhibit responses independent of one another. Data suggest that in vitro findings may ultimately be implemented to elucidate underlying adverse outcome pathways (AOP) for linking high-throughput toxicity tests to physiological in vivo responses. Further, this investigation supports assessing subjects based upon individual responses as a complement to standard longitudinal (pre vs. post) intervention grouping strategies. Ultimately, it may become possible to predict a physiological (systemic) response based upon cellular-level (in vitro) observations.
Collapse
Affiliation(s)
- Matthew A Stiegel
- a Duke University Medical Center , Department of Occupational and Environmental Safety , Durham , NC , US
| | - Joachim D Pleil
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Jon R Sobus
- b United States Environmental Protection Agency, National Exposure Research Lab , Exposure Methods and Measurement Division , Research Triangle Park , NC , US
| | - Tina Stevens
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| | - Michael C Madden
- c United States Environmental Protection Agency , National Health and Environmental Effects Research Lab, Environmental Public Health Division , Chapel Hill , NC , US
| |
Collapse
|
14
|
Williams J, Pleil J. Crowd-based breath analysis: assessing behavior, activity, exposures, and emotional response of people in groups. J Breath Res 2016; 10:032001. [PMID: 27341381 DOI: 10.1088/1752-7155/10/3/032001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new concept for exhaled breath analysis has emerged wherein groups, or even crowds of people are simultaneously sampled in enclosed environments to detect overall trends in their activities and recent exposures. The basic idea is to correlate the temporal profile of known breath markers such as carbon dioxide, isoprene, or acetone with all other volatile organics in the air space. Those that trend similarly in time are designated as breath constituents. The ultimate goal of this work is to develop technology for assessing group based behaviors, chemical exposures or even changes in stress or mood. Applications are myriad ranging from chemical dose/toxicity screening to health and stress status for national security diagnostics. The basic technology employs real-time mass spectrometry capable of simultaneously measuring volatile chemicals and endogenous breath markers.
Collapse
|
15
|
Wallace MAG, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:380-409. [PMID: 27759495 PMCID: PMC6147038 DOI: 10.1080/10937404.2016.1215772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | | | - Joachim D Pleil
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| |
Collapse
|