1
|
Gupta RC, Doss RB. Toxicity Potential of Nutraceuticals. Methods Mol Biol 2025; 2834:197-230. [PMID: 39312167 DOI: 10.1007/978-1-0716-4003-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
During the past few decades and especially during and after the COVID-19 pandemic, the use of nutraceuticals has become increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have an inherent toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies and biomarkers of exposure, effect, and susceptibility appears to play a pivotal role in the safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly or when polypharmacy is involved. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors that influence their safety.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA.
| | - Robin B Doss
- Department of Toxicology, Murray State University, Breathitt Veterinary Center, Hopkinsville, KY, USA
| |
Collapse
|
2
|
Manzoor MF, Riaz S, Verma DK, Waseem M, Goksen G, Ali A, Zeng XA. Nutraceutical tablets: Manufacturing processes, quality assurance, and effects on human health. Food Res Int 2024; 197:115197. [PMID: 39593282 DOI: 10.1016/j.foodres.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Consumers are increasingly focused on food products' nutritional content and health aspects. Nutraceutical tablets containing nutritional supplements have seen remarkable progress and are well-known for their precise dosage, which can improve consumer health by increasing the intake of bioactive compounds and vital nutrients. Oral nutraceuticals are frequently used to enhance consumer well-being, with around 80% of products being in solid form. This manuscript aims to thoroughly analyze and summarize the gathered literature using various search engines to investigate key trends in the market, the components involved, and the functional impact of nutraceutical tablets. Furthermore, the manuscript explores various nutraceutical tablets such as chewable tablets, gelling capsules, vitamin tablets, spirulina tablets, and bran tablets. A perspective is provided on multiple production and manufacturing methods of nutraceutical tablets, along with comparing these processes. Following this, evaluating quality characteristics and enforcing quality assurance procedures have been emphasized. The manuscript discussed the physiological breakdown of ingestible nutraceutical tablets in the human body and the possible toxic effects of the components found in these tablets. Furthermore, the focus is on producing nutraceutical tablets in a more environmentally friendly manner, tackling sustainability issues, offering solutions, and delving into potential opportunities. This manuscript will create a significant platform for people from the research, scientific, and industrial fields seeking novel and inventive projects.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Sakhawat Riaz
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agriculture University, Hefei, China
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 St., 02-776 Warsaw, Poland
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
de Oliveira RT, da Silva Oliveira JP, da Silva ALM, Carrão Dantas EK, Koblitz MGB, Bello ML, Felzenszwalb I, Araújo-Lima CF, Macedo AF. Vanilla from Brazilian Atlantic Forest: In vitro and in silico toxicity assessment and high-resolution metabolomic analysis of Vanilla spp. ethanolic extracts. Food Chem 2024; 456:139948. [PMID: 38852444 DOI: 10.1016/j.foodchem.2024.139948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
The natural vanilla market, which generates millions annually, is predominantly dependent on Vanilla planifolia, a species characterized by low genetic variability and susceptibility to pathogens. There is an increasing demand for natural vanilla, prized for its complex, authentic, and superior quality compared to artificial counterparts. Therefore, there is a necessity for innovative production alternatives to ensure a consistent and stable supply of vanilla flavors. In this context, vanilla crop wild relatives (WRs) emerge as promising natural sources of the spice. However, these novel species must undergo toxicity assessments to evaluate potential risks and ensure safety for consumption. This study aimed to assess the non-mutagenic and non-carcinogenic properties of ethanolic extracts from V. bahiana, V. chamissonis, V. cribbiana, and V. planifolia through integrated metabolomic profiling, in vitro toxicity assays, and in silico analyses. The integrated approach of metabolomics, in vitro assays, and in silico analyses has highlighted the need for further safety assessments of Vanilla cribbiana ethanolic extract. While the extracts of V. bahiana, V. chamissonis, and V. planifolia generally demonstrated non-mutagenic properties in the Ames assay, V. cribbiana exhibited mutagenicity at high concentrations (5000 μg/plate) in the TA98 strain without metabolic activation. This finding, coupled with the dose-dependent cytotoxicity observed in WST-1 (Water Soluble Tetrazolium) assays, a colorimetric method that assesses the viability of cells exposed to a test substance, underscores the importance of concentration in the safety evaluation of these extracts. Kaempferol and pyrogallol, identified with higher intensity in V. cribbiana, are potential candidates for in vitro mutagenicity. Although the results are not conclusive, they suggest the safety of these extracts at low concentrations. This study emphasizes the value of an integrated approach in providing a nuanced understanding of the safety profiles of natural products, advocating for cautious use and further research into V. cribbiana mutagenicity.
Collapse
Affiliation(s)
- Renatha Tavares de Oliveira
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Federal University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 458 Urca, Rio de Janeiro, RJ, Brazil
| | - Joana Paula da Silva Oliveira
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Federal University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 458 Urca, Rio de Janeiro, RJ, Brazil
| | - Ana Laura Mourão da Silva
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Federal University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 458 Urca, Rio de Janeiro, RJ, Brazil
| | - Eduardo Kennedy Carrão Dantas
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil
| | - Maria Gabriela Bello Koblitz
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 296 Urca, Rio de Janeiro, RJ, Brazil
| | - Murilo Lamim Bello
- Laboratory of Pharmaceutical Planning and Computational Simulation (LaPFarSC), Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 296 Urca, Rio de Janeiro, RJ, Brazil.
| | - Andrea Furtado Macedo
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Federal University of the State of Rio de Janeiro - UNIRIO, Av. Pasteur, 458 Urca, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Aguilera-Rodríguez FR, Zamora-Perez AL, Gutiérrez-Hernández R, Quirarte-Báez SM, Reyes Estrada CA, Ortiz-García YM, Lazalde-Ramos BP. Teratogen Potential Evaluation of the Aqueous and Hydroalcoholic Leaf Extracts of Crataegus oxyacantha in Pregnancy Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:2388. [PMID: 37376012 DOI: 10.3390/plants12122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Crataegus oxyacantha is used in the treatment of cardiovascular diseases. The aim of this study was to evaluate the transplacental genotoxicity effect of aqueous (AE) and hydroalcoholic extract (HE) of leaves C. oxyacantha in a rat model and the quantification of malondialdehyde (MDA) in the liver. Three different doses of the AE and HE of the C. oxyacantha leaf were administered orally (500, 1000 and 2000 mg/kg) to Wistar rats during 5 days through the pregnancy term (16-21 days), and sampling in rats occurred every 24 h during the last 6 days of gestation, while only one sample was taken in neonates at birth. A sample of the mother's and the neonate's liver was taken for the determination of MDA. The results show that, at the hepatic level, the evaluated doses of extracts C. oxyacantha in pregnant rats and their pups did not show cytotoxicity. However, the AE and HE generated cytotoxic and genotoxic damage in the short term. On the other hand, only the AE showed a teratogenic effect. Based on these results, the AE and HE of the C. oxyacantha leaf should not be administered during pregnancy.
Collapse
Affiliation(s)
- Fany Renata Aguilera-Rodríguez
- Maestría en Ciencias y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - Ana Lourdes Zamora-Perez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Rosalinda Gutiérrez-Hernández
- Licenciatura en Nutrición, Unidad Académica de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | | | - Claudia Araceli Reyes Estrada
- Maestría en Ciencias de la Salud, Unidad Académica de Medicina Humana, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - Yveth Marlene Ortiz-García
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Blanca Patricia Lazalde-Ramos
- Maestría en Ciencias y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
5
|
Yuzbasioglu D, Dilek UK, Erikel E, Unal F. Antigenotoxic effect of hyperoside against Mitomycin C and hydrogen peroxide-induced genotoxic damage on human lymphocytes. Toxicol In Vitro 2023; 90:105604. [PMID: 37137419 DOI: 10.1016/j.tiv.2023.105604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Hyperoside is a flavonol glycoside isolated from various plant genera such as Hypericum and Crataegus. It has an important place in the human diet and is used medically to relieve pain and ameliorate cardiovascular functions. However, a comprehensive profile of the genotoxic and antigenotoxic effects of hyperoside is not known. The current study aimed to investigate the genotoxic and antigenotoxic effects of hyperoside against genetic damages induced by two genotoxins (MMC and H2O2) in human lymphocytes using chromosomal aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) assays in human peripheral blood lymphocytes in vitro. Blood lymphocytes were incubated with 7.8-62.5 μg/mL concentrations of hyperoside alone and simultaneously with 0.20 μg/mL Mitomycin C (MMC) or 100 μM Hydrogen peroxide (H2O2). Hyperoside did not exhibit genotoxic potential in the CA, SCE, and MN assays. Moreover, it did not cause a decrease in mitotic index (MI) which is an indicator of cytotoxicity. On the other hand, hyperoside significantly decreased CA, SCE, and MN (except for MMC treatment) frequencies induced by MMC and H2O2. Hyperoside, increased mitotic index against both mutagenic agents at 24-h treatment when compared to positive control. Our results demonstrate that hyperoside exhibited antigenotoxic effects rather than genotoxic in vitro human lymphocytes. Therefore, hyperoside may be a potential preventive agent in inhibiting chromosomal and oxidative damage induced by genotoxic chemicals.
Collapse
Affiliation(s)
- Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Ankara, Turkey.
| | - Ummugulsum Kubra Dilek
- Graduate School of Natural and Applied Sciences, Department of Biology, Gazi University, Ankara, Turkey
| | - Esra Erikel
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Ankara, Turkey
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Ankara, Turkey.
| |
Collapse
|
6
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
7
|
Mariano LNB, Boeing T, da Silva RDCV, da Silva LM, Gasparotto-Júnior A, Cechinel-Filho V, de Souza P. Exotic Medicinal Plants Used in Brazil with Diuretic Properties: A Review. Chem Biodivers 2022; 19:e202200258. [PMID: 35544364 DOI: 10.1002/cbdv.202200258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 11/05/2022]
Abstract
Several exotic plants (non-native) are used in Brazilian traditional medicine and are known worldwide for their possible diuretic actions. Among the wide variety of plants, standing out Achillea millefolium L., Camellia sinensis L. Kuntze, Crocus sativus L., Hibiscus sabdariffa Linn., Petroselinum crispum (Mill.) A.W. Hill, Taraxacum officinale (L.) Weber, and Urtica dioica L., whose effects have already been the subject of some scientific study. In addition, we also discussed other exotic species in Brazil used popularly, but that still lack scientific studies, like the species Arctium lappa L., Carica papaya L., Catharanthus roseus (L.) G. Don, Centella asiatica (L.) Urb, Citrus aurantium L., and Persea americana Mill. However, generally, clinical studies on these plants are scarce. In this context, different plant species can be designated for further comprehensive studies, therefore, promoting support for developing an effective medicine to induce diuresis.
Collapse
Affiliation(s)
- Luísa Nathália Bolda Mariano
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Thaise Boeing
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Rita de Cássia Vilhena da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Arquimedes Gasparotto-Júnior
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| |
Collapse
|
8
|
Martinelli F, Perrone A, Yousefi S, Papini A, Castiglione S, Guarino F, Cicatelli A, Aelaei M, Arad N, Gholami M, Salami SA. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn ( Crataegusmonogyna Jacq.), Rosaceae. Molecules 2021; 26:molecules26237266. [PMID: 34885847 PMCID: PMC8659235 DOI: 10.3390/molecules26237266] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus monogyna Jacq.) is a wild edible fruit tree of the genus Crataegus, one of the most interesting genera of the Rosaceae family. This review is the first to consider, all together, the pharmaceutical, phytochemical, functional and therapeutic properties of C. monogyna based on numerous valuable secondary metabolites, including flavonoids, vitamin C, glycoside, anthocyanin, saponin, tannin and antioxidants. Previous reviews dealt with the properties of all species of the entire genera. We highlight the multi-therapeutic role that C. monogyna extracts could have in the treatment of different chronic and degenerative diseases, mainly focusing on flavonoids. In the first part of this comprehensive review, we describe the main botanical characteristics and summarize the studies which have been performed on the morphological and genetic characterization of the C. monogyna germplasm. In the second part, the key metabolites and their nutritional and pharmaceutical properties are described. This work could be an essential resource for promoting future therapeutic formulations based on this natural and potent bioactive plant extract.
Collapse
Affiliation(s)
- Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Anna Perrone
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
- Correspondence: (A.P.); (S.A.S.)
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Alessio Papini
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Francesco Guarino
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Mitra Aelaei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Mansour Gholami
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (A.P.); (S.A.S.)
| |
Collapse
|
9
|
Aguilera-Rodríguez FR, Zamora-Perez AL, Galván-Moreno CL, Gutiérrez-Hernández R, Reyes Estrada CA, Esparza-Ibarra EL, Lazalde-Ramos BP. Cytotoxic and Genotoxic Evaluation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of Crataegus oxyacantha in Murine Model. PLANTS (BASEL, SWITZERLAND) 2021; 10:2217. [PMID: 34686027 PMCID: PMC8540136 DOI: 10.3390/plants10102217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 05/13/2023]
Abstract
Crataegus oxyacantha has been mainly used in traditional medicine for the treatment of cardiovascular diseases. However, its safety profile has not been fully established, since only the genotoxic effects of C. oxyacantha fruit have been described. Therefore, the objective of this work was evaluating the cytotoxicity and genotoxicity of the aqueous and hydroalcoholic leaf and bark extracts of C. oxyacantha by means of the micronucleus test in a murine model. Doses of 2000, 1000, and 500 mg/kg of both extracts were administered orally for 5 days in mice of the Balb-C strain. Peripheral blood smears were performed at 0, 24, 48, 72, and 96 h after each administration. The number of polychromatic erythrocytes (PCEs), micronucleated polychromatic erythrocytes (MNPCEs), and micronucleated erythrocytes (MNEs) was determined at the different sampling times. Our results showed that the leaf and bark of C. oxyacantha increase the number of MNEs at the 2000 mg/kg dose, and only the aqueous leaf extract decreases the number of PCEs at the same dose. Therefore, the aqueous and hydroalcoholic leaf and bark extracts of C. oxyacantha showed genotoxic effects, and only the aqueous leaf extract exhibited cytotoxic effects.
Collapse
Affiliation(s)
- Fany Renata Aguilera-Rodríguez
- Maestría en Ciencia y Tecnología Química, Laboratorio de Etnofarmacología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Mexico; (F.R.A.-R.); (C.L.G.-M.)
| | - Ana Lourdes Zamora-Perez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44100 Jalisco, Mexico;
| | - Clara Luz Galván-Moreno
- Maestría en Ciencia y Tecnología Química, Laboratorio de Etnofarmacología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Mexico; (F.R.A.-R.); (C.L.G.-M.)
| | - Rosalinda Gutiérrez-Hernández
- Programa de Licenciatura en Nutrición de la Unidad Académica de Enfermería, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Mexico;
| | - Claudia Araceli Reyes Estrada
- Maestría en Ciencias de la Salud Unidad Académica de Medicina Human, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Mexico;
| | - Edgar L. Esparza-Ibarra
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Mexico;
| | - Blanca Patricia Lazalde-Ramos
- Maestría en Ciencia y Tecnología Química, Laboratorio de Etnofarmacología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, 98000 Zacatecas, Mexico; (F.R.A.-R.); (C.L.G.-M.)
| |
Collapse
|
10
|
Dantas FGDS, Castilho PFD, Almeida-Apolonio AAD, Araújo RPD, Oliveira KMPD. Mutagenic potential of medicinal plants evaluated by the Ames Salmonella/microsome assay: A systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108338. [PMID: 33339578 DOI: 10.1016/j.mrrev.2020.108338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
The Ames test has become one of the most commonly used tests to assess the mutagenic potential of medicinal plants since they have several biological activities and thus have been used in traditional medicine and in the pharmaceutical industry as a source of raw materials. Accordingly, this review aims to report previous use of the Ames test to evaluate the mutagenic potential of medicinal plants. A database was constructed by curating literature identified by a search on the electronic databases Medline (via Pubmed), Science Direct, Scopus, and Web of Science from 1975 to April 2020, using the following terms: "genotoxicity tests" OR "mutagenicity tests" OR "Ames test" AND "medicinal plants." From the research, 239 articles were selected, including studies of 478 species distributed across 111 botanical families, with Fabaceae, Asteraceae and Lamiaceae being the most frequent. It was identified that 388 species were non-mutagenic. Of these, 21% (83/388) showed antimutagenic potential, most notable in the Lamiaceae family. The results also indicate that 18% (90/478) of the species were mutagenic, of which 54% were mutagenic in the presence and absence of S9. Strains TA98 and TA100 showed a sensitivity of 93% in detecting plant extracts with mutagenic potential. However, the reliability of many reviewed studies regarding the botanical extracts may be questioned due to technical issues, such as testing being performed only in the presence or absence of S9, use of maximum doses below 5 mg/plate and lack of information on the cytotoxicity of tested doses. These methodological aspects additionally demonstrated that a discussion about the doses used in research on mixtures, such as the ones assessed with botanical extracts and the most sensitive strains employed to detect the mutagenic potential, should be included in a possible update of the guidelines designed by the regulatory agencies.
Collapse
Affiliation(s)
- Fabiana Gomes da Silva Dantas
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | | | | | - Renata Pires de Araújo
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Kelly Mari Pires de Oliveira
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil; Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
11
|
Pereira EDDM, da Silva J, Carvalho PDS, Grivicich I, Picada JN, Salgado Júnior IB, Vasques GJ, Pereira MADS, Reginatto FH, Ferraz ADBF. In vivo and in vitro toxicological evaluations of aqueous extract from Cecropia pachystachya leaves. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:659-671. [PMID: 32865139 DOI: 10.1080/15287394.2020.1811817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
leaves are popularly used to treat asthma and diabetes. Despite the widespread consumption of this plant, there are few scientific studies regarding its toxicological potential. In order to conduct a thorough study concerning the potential adverse effects, the aim of this study was to assess acute and subacute toxicity tests of crude aqueous extract from C. pachystachya leaves (CAE-Cp) using in vivomodel, as well as in vitro cytotoxicity, genotoxicity and antioxidant activity. In addition, genotoxicity, and cytotoxicity of chlorogenic acid (CGA) and cytotoxicity of isoorientin (ISOO) were also evaluated. The antioxidant activity was verified by DPPH, cytotoxicity using sulforhodamine B (SRB) assay and genotoxicity by comet assay on V79 cells. The phytochemical analysis of CAE-Cp detected flavonoids and tannins, CGA and ISOO as the major compounds utilizing HPLC. The total flavonoid content (6.52 mg/g EQ) and antioxidant activity (EC50 = 62.15 µg/ml) of CAE-Cp were determined. In vitro evaluations with CAE-Cp showed genotoxic effects at 0.31 to 2.5 mg/ml and an expressive cytotoxicity on HT-29 (IC50 = 4.43 µg/ml) cells. CGA was genotoxic against V79 cells at 0.07 mg/ml and cytotoxic against to HT-29 (IC50 = 71.70 µg/ml), OVCAR-3 (IC50 = 80.07 µg/ml), MCF-7 (IC50 = 45.58 µg/ml) and, NCI-H460 (IC50 = 71.89 µg/ml) cancer cell lines. Wistar rats treated with a single dose (2,000 mg/kg) CAE-Cp decreased hemoglobin levels after 14 days, although no significant toxicity was observed in animals after 28 days. In view of the in vitro cytotoxicity and genotoxicity detected, further studies are necessary to establish the safe use of CAE-Cp.
Collapse
Affiliation(s)
- Erminiana Damiani de Mendonça Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil , Canoas, Brasil
- Programa de Iniciação Científica e Tecnológica, Centro Universitário Luterano de Palmas , Palmas, Brasil
| | - Juliana da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil , Canoas, Brasil
| | - Patrícia da Silva Carvalho
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil , Canoas, Brasil
| | - Ivana Grivicich
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil , Canoas, Brasil
| | - Jaqueline Nascimento Picada
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil , Canoas, Brasil
| | | | - Gabriela Jouglard Vasques
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil , Canoas, Brasil
| | | | - Flavio Henrique Reginatto
- Programa de Pós-graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis, Brasil
| | - Alexandre de Barros Falcão Ferraz
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil , Canoas, Brasil
| |
Collapse
|
12
|
Balbueno MCDS, Peixoto KDC, Coelho CDP. Evaluation of the Efficacy of Crataegus oxyacantha in Dogs with Early-Stage Heart Failure. HOMEOPATHY 2020; 109:224-229. [PMID: 32679591 DOI: 10.1055/s-0040-1710021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Myxomatous mitral valve disease (MMVD) is the most common cardiopathy in middle-aged dogs. When the dog is asymptomatic and has an enlarged left atrium, treatment is beneficial; however, some allopathic drugs are very costly and may produce side effects. To extend the duration of this asymptomatic phase, complementary therapies such as herbal medicine and homeopathy are available. Although herbal therapy with extract of Crataegus oxyacantha is beneficial, there is a risk of adverse reactions-unlike with homeopathy, where the risk is minimized with the administration of ultra-diluted doses. OBJECTIVE This study evaluated the efficacy of Crataegus oxyacantha, as mother tincture (MT) and in 6 cH homeopathic formulation, in treating the initial phase of heart failure due to MMVD in a veterinary clinic setting. METHODS A total of 30 dogs with MMVD, 7 years or older and weighing up to 10 kg, were randomized into three groups as follows: Crataegus 6 cH, Crataegus MT, and hydroalcoholic solution (placebo). Animals were evaluated through echocardiography parameters, laboratory blood tests, and systolic blood pressure (SBP) measurements at 30, 60, 90, and 120 days after initiation of therapy, for statistical analysis and monitoring of the blinded study. RESULTS Patients who received Crataegus 6 cH showed a reduction in SBP 60 days after treatment, while those receiving Crataegus MT exhibited a reduction 90 days after the therapy was initiated. There was a significant linear regression when evaluating the effect of treatment with Crataegus 6 cH on SBP measurements over the evaluation intervals (linear equation: SBP = 176.57 mm Hg - 0.21x, where x represents days of treatment). There was an increase in both fractional shortening and isovolumetric relaxation time for those patients receiving the homeopathic formulation. CONCLUSIONS Therapy with Crataegus was beneficial for hypertensive and cardiopathic dogs with MMVD, extending the duration of the asymptomatic phase. The reduction in SBP occurred more swiftly in the 6 cH group than in the MT-treated dogs.
Collapse
Affiliation(s)
- Melina Castilho de Souza Balbueno
- Department of Veterinary Medicine and Animal Welfare, University of Santo Amaro, São Paulo, São Paulo, Brazil.,HD Science School, São Caetano do Sul, São Paulo, Brazil
| | - Kleber da Cunha Peixoto
- Department of Veterinary Medicine and Animal Welfare, University of Santo Amaro, São Paulo, São Paulo, Brazil
| | - Cidéli de Paula Coelho
- Department of Veterinary Medicine and Animal Welfare, University of Santo Amaro, São Paulo, São Paulo, Brazil.,HD Science School, São Caetano do Sul, São Paulo, Brazil
| |
Collapse
|
13
|
Wu M, Liu L, Xing Y, Yang S, Li H, Cao Y. Roles and Mechanisms of Hawthorn and Its Extracts on Atherosclerosis: A Review. Front Pharmacol 2020; 11:118. [PMID: 32153414 PMCID: PMC7047282 DOI: 10.3389/fphar.2020.00118] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD), especially atherosclerosis, is a leading cause of morbidity and mortality globally; it causes a considerable burden on families and caregivers and results in significant financial costs being incurred. Hawthorn has an extensive history of medical use in many countries. In China, the use of hawthorn for the treatment of CVD dates to 659 AD. In addition, according to the theory of traditional Chinese medicine, it acts on tonifying the spleen to promote digestion and activate blood circulation to dissipate blood stasis. This review revealed that the hawthorn extracts possess serum lipid-lowering, anti-oxidative, and cardiovascular protective properties, thus gaining popularity, especially for its anti-atherosclerotic effects. We summarize the four principal mechanisms, including blood lipid-lowering, anti-oxidative, anti-inflammatory, and vascular endothelial protection, thus providing a theoretical basis for further utilization of hawthorn.
Collapse
Affiliation(s)
- Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Guo X, Seo JE, Li X, Mei N. Genetic toxicity assessment using liver cell models: past, present, and future. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:27-50. [PMID: 31746269 DOI: 10.1080/10937404.2019.1692744] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
15
|
Meli MA, Desideri D, Fagiolino I, Roselli C. Trace elements, 210Po and 210Pb in a selection of berries on commercial sale in Italy. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06604-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Abstract
By the turn of the twenty-first century, the use of nutraceuticals became increasingly popular in both humans and animals due to their easy access, cost-effectiveness, and tolerability with a wide margin of safety. While some nutraceuticals are safe, others have a toxic potential. For a large number of nutraceuticals, no toxicity/safety data are available due to a lack of pharmacological/toxicological studies. The safety of some nutraceuticals can be compromised via contamination with toxic plants, metals, mycotoxins, pesticides, fertilizers, drugs of abuse, etc. Knowledge of pharmacokinetic/toxicokinetic studies appears to play a pivotal role in safety and toxicity assessment of nutraceuticals. Interaction studies are essential to determine efficacy, safety, and toxicity when nutraceuticals and therapeutic drugs are used concomitantly. This chapter describes various aspects of nutraceuticals, particularly their toxic potential, and the factors influencing their safety.
Collapse
|
17
|
Yonekubo BT, Alves HDMC, de Souza Marques E, Perazzo FF, Rosa PCP, Gaivão IODM, Maistro EL. The genotoxic effects of fruit extract of Crataegus oxyacantha (hawthorn) in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:974-982. [PMID: 30325712 DOI: 10.1080/15287394.2018.1503982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Crataegus oxyacantha L. (Rosaceae) is a medicinal plant with a long history of use in European, Chinese, and American. The majority of pharmacological activities associated with fruit extracts of C. oxyacantha L. are related to cardio-stimulant properties utilized in the treatment of atherosclerosis, hypertension with myocardic insufficiency, angina pectoris, cardiac rhythm alterations, and heart failure. Some other therapeutic uses for renal calculi, dyspnea, as well as a diuretic, sedative, and anxiolytic were also reported. Due to the beneficial potential of C. oxyacantha fruits extract but evidence in vitro of genetic toxicity, the aim of the present study was to examine the genotoxic potential of plant extract in vivo in mice. The extract was administered orally, daily by gavage at doses of 50, 100, and 200 mg/kg body weight for seven days. Data demonstrated that C. oxyacantha extract did not markedly induce DNA damage in leukocytes and bone marrow cells by the comet assay; however, the extract produced a significant rise in micronucleated polychromatic erythrocytes (PCE) at all tested doses in a non-dose dependent manner as evidenced by the micronucleus test. The PCE/normochromatic erythrocytes (NCE) ratio indicated no significant cytotoxicity. Under our experimental conditions, C. oxyacantha fruits extract exhibited weak clastogenic and/or aneugenic effects in bone marrow cells of male mice, confirming our previous in vitro findings that this plant extract induced genotoxicity suggesting that prolonged or high dose use needs to be undertaken with caution.
Collapse
Affiliation(s)
- Bruna Thiemi Yonekubo
- a Faculdade de Filosofia e Ciências, Departamento de Fonoaudiologia , São Paulo State University - UNESP , Marília , SP , Brazil
| | | | - Eduardo de Souza Marques
- a Faculdade de Filosofia e Ciências, Departamento de Fonoaudiologia , São Paulo State University - UNESP , Marília , SP , Brazil
| | - Fábio Ferreira Perazzo
- b Químicas e Farmacêuticas, Departamento de Ciências Exatas e da Terra , Universidade Federal de São Paulo - UNIFESP - Instituto de Ciências Ambientais , Diadema , SP , Brazil
| | - Paulo César Pires Rosa
- c Faculdade de Ciências Médicas , Universidade Estadual de Campinas - UNICAMP , Campinas , SP , Brazil
| | | | - Edson Luis Maistro
- a Faculdade de Filosofia e Ciências, Departamento de Fonoaudiologia , São Paulo State University - UNESP , Marília , SP , Brazil
| |
Collapse
|
18
|
Alves JM, Leandro LF, Senedese JM, Castro PTD, Pereira DE, Resende FA, Campos DL, Silva JJMD, Varanda EA, Bastos JK, Ambrósio SR, Tavares DC. Antigenotoxicity properties of Copaifera multijuga oleoresin and its chemical marker, the diterpene (-)-copalic acid. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 81:116-129. [PMID: 29286884 DOI: 10.1080/15287394.2017.1420505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED In view of the biological activities and growing therapeutic interest in oleoresin obtained from Copaifera multijuga, this study aimed to determine the genotoxic and antigenotoxic potential of this oleoresin (CMO) and its chemical marker, diterpene (-)-copalic acid (CA). The micronucleus (MN) assay in V79 cell cultures and the Ames test were used for in vitro analyses, as well as MN and comet assays in Swiss mice for in vivo analyses. The in vitro genotoxicity/mutagenicity results showed that either CMO (30, 60, or 120 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) or CA (2.42; 4.84, or 9.7 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) did not induce a significant effect on the frequency of MN and number of revertants, demonstrating an absence of genotoxic and mutagenic activities, respectively, in vitro. In contrast, these natural products significantly reduced the frequency of MN induced by methyl methanesulfonate (MMS), and exerted a marked inhibitory effect against indirect-acting mutagens in the Ames test. In the in vivo test system, animals treated with CMO (6.25 mg/kg b.w.) exhibited a significant decrease in rate of MN occurrence compared to those treated only with MMS. An antigenotoxic effect of CA was noted in the MN test (1 and 2 mg/kg b.w.) and the comet assay (0.5 mg/kg b.w.). Data suggest that the chemical marker of the genus Copaifera, CA, may partially be responsible for the observed chemopreventive effect attributed to CMO exposure. ABBREVIATIONS 2-AA, 2-anthramine; 2-AF, 2-aminofluorene; AFB1, aflatoxin B1; B[a]P, benzo[a]pyrene; BOD, biological oxygen demand; BPDE, benzo[a]pyrene-7,8-diol-9,10-epoxide; CA, (-)-copalic acid; CMO, oleoresin of Copaifera multijuga, DMEM, Dulbecco`s Modified Eagles`s Medium; DMSO, dimethylsulfoxide; EMBRAPA, Brazilian agricultural research corporation; GC-MS, gas chromatography-mass spectrometry; HAM-F10, nutrient mixture F-10 Ham; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; MI, mutagenic index; MMC, mitomycin C; MMS, methyl methanesulfonate; MN, micronucleus; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; NMR, nuclear magnetic resonance; NPD, 4-nitro-o-phenylenediamine; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; SA, sodium azide; V79, Chinese hamster lung fibroblast.
Collapse
Affiliation(s)
| | | | | | | | | | - Flávia Aparecida Resende
- b Grupo de Pesquisa em Química Medicinal e Medicina Regenerativa Universidade de Araraquara , Araraquara , São Paulo , Brazil
| | - Débora Leite Campos
- c Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara , Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Jonas Joaquim Mangabeira da Silva
- d Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Eliana Aparecida Varanda
- c Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara , Universidade Estadual Paulista , Araraquara , São Paulo , Brazil
| | - Jairo Kenupp Bastos
- d Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | | | | |
Collapse
|
19
|
Acésio NO, Carrijo GS, Batista TH, Damasceno JL, Côrrea MB, Tozatti MG, Cunha WR, Tavares DC. Assessment of the antioxidant, cytotoxic, and genotoxic potential of the Annona muricata leaves and their influence on genomic stability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1290-1300. [PMID: 28956726 DOI: 10.1080/15287394.2017.1377653] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2016] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
The popular use of Annona muricata L. is based upon a range of medicinal purposes, and the plant exhibits biological activities including antihyperglycemic, antiparasitic, and antitumor activities. The objectives of this study were to examine the antioxidant, cytotoxic, and genotoxic potential of the hydroalcoholic extract of A. muricata leaves (AMEs), as well as its effects on genotoxicity induced by methyl methanesulfonate (MMS) and hydrogen peroxide (H2O2). The results using 2,2-diphenyl-1-picrylhydrazyl assay showed that AME was able to scavenge 44.71% of free radicals. The extract significantly reduced the viability of V79 cells in the clonogenic assay at concentrations ≥8 µg/ml. No significant differences in micronucleus (MN) frequency were observed between V79 cell cultures treated with different concentrations of the extract (0.125, 0.25, 0.5, and 1 µg/ml) and negative control. When AME concentrations were combined with MMS, data revealed no marked differences from mutagen alone. In contrast, significant reductions in the frequencies of MN were noted in cultures treated with AME combined with H2O2 compared to H2O2 alone. In vivo studies found no significant differences in the frequencies of micronucleated polychromatic erythrocytes (MNPCEs) between animals treated with different AME doses compared to control. Animals treated with AME doses of 125 and 250 mg/kg and MMS exhibited significantly higher frequencies of MNPCE compared to mutagen alone. In conclusion, under current experimental conditions, AME was not genotoxic and exerted a modulatory effect on DNA damage depending upon the experimental conditions. The extract did not influence markedly MMS-induced genotoxicity in in vitro test system. However, the extract increased DNA damage induced by mutagen in mice. In V79 cells, AME reduced the genotoxicity produced by H2O2, and this protective effect was attributed in part to the antioxidant activity of AME.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wilson Roberto Cunha
- a Postgraduate program in Sciences , Universidade de Franca , Franca SP , Brazil
| | | |
Collapse
|