1
|
WANG XS, HU MX, GUAN QX, MEN LH, LIU ZY. Metabolomics analysis reveals the renal protective effect of Panax ginseng C. A. Mey in type 1 diabetic rats. Chin J Nat Med 2022; 20:378-386. [DOI: 10.1016/s1875-5364(22)60175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 12/22/2022]
|
2
|
Kim HY, Lee YJ, Kim SJ, Lee JD, Kim S, Ko MJ, Kim JW, Shin CY, Kim KB. Metabolomics profiling of valproic acid-induced symptoms resembling autism spectrum disorders using 1H NMR spectral analysis in rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1-13. [PMID: 34445937 DOI: 10.1080/15287394.2021.1967821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prenatal exposure to valproic acid (VPA) has been implicated in the manifestation of autism spectrum disorder (ASD)-like behavioral and functional changes both in human and rodents including mice and rats. The objective of this study was to determine metabolomics profiling and biomarkers related to VPA-induced symptoms resembling ASD using proton nuclear magnetic resonance (1H-NMR) spectral data. VPA was administered to pregnant rats at gestation day 12.5 and effects measured subsequently in male 4-week-old offspring pups. The sociability of VPA-treated animals was significantly diminished and exhibited ASD-like behavior as evidenced by reduction of social adaptation disorder and lack of social interactions. To find biomarkers related to ASD, the following were collected prefrontal brain cortices, urine bladder and blood samples directly from heart puncture. In all samples, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) displayed significant clustering pattern differences between control and treated groups. Valine, taurine, myo-inositol, 3-hydroxybutyrate and 1,3-dihydroxyacetone were significantly decreased in brain cortices in treated rats. Serum metabolites of glucose, creatine phosphate, lactate, glutamine and threonine were significantly increased in VPA-administered animals. Urinary metabolites of pimelate, 3-hydroxyisovalerate and valerate were significantly reduced in VPA-treated rat, whereas galactose and galactonate levels were elevated. Various metabolites were associated with mitochondrial dysfunction metabolism and central nervous system disorders. Data demonstrated that VPA-induced alterations in endogenous metabolites of serum, urine, and brain cortex which might prove useful as biomarkers for symptoms resembling ASD as a model of this disorder.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Yong-Jae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sun Jae Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan Republic of Korea
| | - Mee Jung Ko
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chan Young Shin
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| |
Collapse
|
3
|
Araújo AM, Carvalho F, Guedes de Pinho P, Carvalho M. Toxicometabolomics: Small Molecules to Answer Big Toxicological Questions. Metabolites 2021; 11:692. [PMID: 34677407 PMCID: PMC8539642 DOI: 10.3390/metabo11100692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Given the high biological impact of classical and emerging toxicants, a sensitive and comprehensive assessment of the hazards and risks of these substances to organisms is urgently needed. In this sense, toxicometabolomics emerged as a new and growing field in life sciences, which use metabolomics to provide new sets of susceptibility, exposure, and/or effects biomarkers; and to characterize in detail the metabolic responses and altered biological pathways that various stressful stimuli cause in many organisms. The present review focuses on the analytical platforms and the typical workflow employed in toxicometabolomic studies, and gives an overview of recent exploratory research that applied metabolomics in various areas of toxicology.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
- FP-I3ID, FP-ENAS, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| |
Collapse
|
4
|
Lee JD, Kim HY, Park JJ, Oh SB, Goo H, Cho KJ, Kim S, Kim KB. Metabolomics approach to biomarkers of dry eye disease using 1H-NMR in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:313-330. [PMID: 33393448 DOI: 10.1080/15287394.2020.1867274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dry eye disease (DED) is a chronic and progressive lesion on the ocular surface and induces symptoms, such as burning sensation, itchy eyes, heavy eyes, tired eyes, dry feeling, facial flushing, and blurred vision. The present study was performed to develop DED biomarkers using metabolomics in a rat model. DED was induced by injecting scopolamine and exposing rats to a dry condition. Scopolamine (12 mg/kg/day for 7 days) was subcutaneously injected to male Sprague-Dawley rats. The rats were placed in dry condition with air-flow and dehumidifier. Tear volume and tear breakup time (TBUT) were measured, and eyes were examined through fluorescein staining to assess DED. Mucosal damage and immune reactions were also determined. Plasma and urinary endogenous metabolites were determined using 1H-NMR analysis. Compared with control tear and TBUT levels were significantly decreased in the DED group whereas corneal damage was significantly increased. The levels of interleukins (IL-6) and IL-1β significantly elevated in the cornea and lacrimal glands in the DED group. TNF-α was numerically increased but not significantly different between groups. Pattern recognition using principal component analysis (PCA) and orthogonal projections to latent structure-discriminant analysis (OPLS-DA) of the NMR spectra in global profiling revealed different clusters between DED and control groups. Target profiling demonstrated that PCA and OPLS-DA score plots were separated between DED and controls in plasma and urine. Subsequently, 9 plasma metabolites were selected to examine different clustering between groups, and 26 urinary metabolites were also selected. Plasma metabolites showed a non-significant rising tendency in the DED group. Urinary phenylalanine, phenylacetate, pantothenate, glycine, succinate, methanol, valine, propylene glycol, histidine, threonine, lactate, and acetate were significantly different between control and DED rats. These results may contribute to understanding the metabolic regulation that is involved in DED and might be useful for potential biomarkers related to DED in rats.
Collapse
Affiliation(s)
- Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Chungnam, Republic of Korea
| | - Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Chungnam, Republic of Korea
| | - Jin Ju Park
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Chungnam, Republic of Korea
| | - Soo Bean Oh
- Department of Ophthalmology, Dankook University, Cheonan, Republic of Korea
| | - Hyeyoon Goo
- Department of Ophthalmology, Dankook University, Cheonan, Republic of Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, Dankook University, Cheonan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Chungnam, Republic of Korea
| |
Collapse
|
5
|
He T, Liu J, Wang X, Duan C, Li X, Zhang J. Analysis of cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics and an integrative network pharmacology analysis. Food Chem Toxicol 2020; 146:111845. [DOI: 10.1016/j.fct.2020.111845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
|
6
|
Tiika RJ, Wei J, Ma R, Yang H, Cui G, Duan H, Ma Y. Identification and expression analysis of the WRKY gene family during different developmental stages in Lycium ruthenicum Murr. fruit. PeerJ 2020; 8:e10207. [PMID: 33194409 PMCID: PMC7602686 DOI: 10.7717/peerj.10207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background The WRKY gene family, one of the major transcription factor families in plants, plays crucial regulatory roles in physiological and biological developmental processes, and the adaptation of plants to the environment. However, the systematic study of WRKY structure, expression profiling, and regulatory functions has not been extensively reported in Lycium ruthenicum, although these aspects have been comprehensively studied in most plant species. Methods In this study, the WRKY genes were identified from a L. ruthenicum transcriptome database by using bioinformatics. The identification, phylogenetic analysis, zinc-finger structures, and conserved motif prediction were extensively explored. Moreover, the expression levels of 23 selected genes with fragments per kilobase of exons per million mapped reads (FPKM) >5 were assayed during different fruit developmental stages with real-time quantitative polymerase chain reaction (RT-qPCR). Results A total of 73 putative WRKY proteins in the L. ruthenicum transcriptome database were identified and examined. Forty-four proteins with the WRKY domain were identified and divided into three major groups with several subgroups, in accordance with those in other plant species. All 44 LrWRKY proteins contained one or two conserved WRKY domains and a zinc-finger structure. Conserved motif prediction revealed conservation of the WRKY DNA-binding domain in L. ruthenicum proteins. The selected LrWRKY genes exhibited discrete expression patterns during different fruit developmental stages. Interestingly, five LrWRKYs (-20, -21, -28, -30, and -31) were expressed remarkably throughout the fruit developmental stages. Discussion Our results reveal the characteristics of the LrWRKY gene family, thus laying a foundation for further functional analysis of the WRKY family in L. ruthenicum.
Collapse
Affiliation(s)
- Richard John Tiika
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China.,Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jia Wei
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China.,Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Rui Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
7
|
de Bruijn V, Behr C, Sperber S, Walk T, Ternes P, Slopianka M, Haake V, Beekmann K, van Ravenzwaay B. Antibiotic-Induced Changes in Microbiome-Related Metabolites and Bile Acids in Rat Plasma. Metabolites 2020; 10:metabo10060242. [PMID: 32545183 PMCID: PMC7344402 DOI: 10.3390/metabo10060242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Various environmental factors can alter the gut microbiome’s composition and functionality, and modulate host health. In this study, the effects of oral and parenteral administration of two poorly bioavailable antibiotics (i.e., vancomycin and streptomycin) on male Wistar Crl/Wi(Han) rats for 28 days were compared to distinguish between microbiome-derived or -associated and systemic changes in the plasma metabolome. The resulting changes in the plasma metabolome were compared to the effects of a third reference compound, roxithromycin, which is readily bioavailable. A community analysis revealed that the oral administration of vancomycin and roxithromycin in particular leads to an altered microbial population. Antibiotic-induced changes depending on the administration routes were observed in plasma metabolite levels. Indole-3-acetic acid (IAA) and hippuric acid (HA) were identified as key metabolites of microbiome modulation, with HA being the most sensitive. Even though large variations in the plasma bile acid pool between and within rats were observed, the change in microbiome community was observed to alter the composition of the bile acid pool, especially by an accumulation of taurine-conjugated primary bile acids. In-depth investigation of the relationship between microbiome variability and their functionality, with emphasis on the bile acid pool, will be necessary to better assess the potential adverseness of environmentally induced microbiome changes.
Collapse
Affiliation(s)
- Véronique de Bruijn
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands;
| | - Christina Behr
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
| | - Saskia Sperber
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
| | - Tilmann Walk
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Philipp Ternes
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Markus Slopianka
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Volker Haake
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Karsten Beekmann
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands;
| | - Bennard van Ravenzwaay
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
- Correspondence:
| |
Collapse
|
8
|
Lee JD, Kim HY, Kang K, Jeong HG, Song MK, Tae IH, Lee SH, Kim HR, Lee K, Chae S, Hwang D, Kim S, Kim HS, Kim KB, Lee BM. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol 2020; 94:887-909. [PMID: 32080758 DOI: 10.1007/s00204-020-02657-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
|
9
|
Ryu SH, Lee JD, Kim JW, Kim S, Kim S, Kim KB. 1H NMR toxicometabolomics following cisplatin-induced nephrotoxicity in male rats. J Toxicol Sci 2019; 44:57-71. [DOI: 10.2131/jts.44.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sung Ha Ryu
- R&D Center, GL Pharm Tech Corp., Korea
- College of Pharmacy, Dankook University, Korea
| | - Jung Dae Lee
- College of Pharmacy, Sungkyunkwan University, Korea
| | - Ji Won Kim
- Pharmacology Department, CKD Research Institute, Korea
| | - Siwon Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Korea
| | | |
Collapse
|