1
|
Nagayoshi H, Murayama N, Kim V, Kim D, Takenaka S, Yamazaki H, Guengerich FP, Shimada T. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1. Chem Res Toxicol 2023; 36:1778-1788. [PMID: 37783573 PMCID: PMC11497155 DOI: 10.1021/acs.chemrestox.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Food Chemistry Section, Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| |
Collapse
|
2
|
Shimada T, Nagayoshi H, Murayama N, Sawai A, Kim V, Kim D, Yamazaki H, Guengerich FP, Takenaka S. Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives having 5,7-dihydroxyl moieties by human cytochromes P450 1B1 and 2A13. Xenobiotica 2022; 52:134-145. [PMID: 35387543 PMCID: PMC9896170 DOI: 10.1080/00498254.2022.2062486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives containing 5,7-dihydroxyl groups by human cytochrome P450 (P450 or CYP) 1B1 and 2A13 was determined using LC-MS/MS systems.3'-Methoxyflavone and 4'-methoxyflavone were mainly O-demethylated to form 3'-hydroxyflavone and 4'-hydroxyflavone, respectively, and then 3',4'-dihydroxyflavone at higher rates with CYP1B1 than with CYP2A13. 4'-Methoxy-5,7-dihydroxyflavone (acacetin) was found to be demethylated by CYP1B1 and 2A13 to form 4',5,7-trihydroxyflavone (apigenin) at rates of 0.098-1 and 0.42 min-1, respectively. 3'-Methoxy-5,7-dihydroxyflavone was also demethylated by both P450s, with CYP2A13 being more active.3',4'-Dimethoxyflavone was a good substrate for CYP1B1 but not for CYP2A13 and was found to be mainly O-demethylated to form 3',4'-dihydroxyflavone (at a rate of 4.2 min-1) and also several ring-oxygenated products having m/z 299 fragments. Molecular docking analysis supported the proper orientation for formation of these products by CYP1B1.Our present results showed that 3'- and 4'-methoxyflavone can be oxidised to their O-demethylated products and, to a lesser extent, to ring oxidation products by both P450s 1B1 and 2A13 and that 3',4'-dimethoxyflavone is a good substrate for CYP1B1 in forming both O-demethylated and ring-oxidation products. Introduction of a 57diOHF moiety into these methoxylated flavonoids caused decreased in oxidation by CYP1B1 and 2A13.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Atsuki Sawai
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| |
Collapse
|
3
|
Vrzal R. Genetic and Enzymatic Characteristics of CYP2A13 in Relation to Lung Damage. Int J Mol Sci 2021; 22:12306. [PMID: 34830188 PMCID: PMC8625632 DOI: 10.3390/ijms222212306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 2A13 is an omitted brother of CYP2A6 that has an important role in the drug metabolism of liver. Due to extrahepatic expression, it has gained less attention than CYP2A6, despite the fact that it plays a significant role in toxicant-induced pulmonary lesions and, therefore, lung cancer. The purpose of this mini-review is to summarize the basic knowledge about this enzyme in relation to the substrates, inhibitors, genetic polymorphisms, and transcriptional regulation that are known so far (September 2021).
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
4
|
Nagayoshi H, Murayama N, Takenaka S, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP, Shimada T. Roles of cytochrome P450 2A6 in the oxidation of flavone, 4'-hydroxyflavone, and 4'-, 3'-, and 2'-methoxyflavones by human liver microsomes. Xenobiotica 2021; 51:995-1009. [PMID: 34224301 DOI: 10.1080/00498254.2021.1950866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nine forms of recombinant cytochrome P450 (P450 or CYP) enzymes were used to study roles of individual P450 enzymes in the oxidation of flavone and some other flavonoids, 4'-hydroxyflavone and 4'-, 3'-, and 2'-methoxyflavones, by human liver microsomes using LC-MS/MS analysis.As has been reported previously , 4'-, 3'-, and 2'-methoxyflavones were preferentially O-demethylated by human liver P450 enzymes to form 4'-, 3'-, and 2'-hydroxylated flavones and also 3',4'-dihydroxyflavone from the former two substrates.In comparisons of product formation by oxidation of these methoxylated flavones, CYP2A6 was found to be a major enzyme catalysing flavone 4'- and 3'-hydroxylations by human liver microsomes but did not play significant roles in 2'-hydroxylation of flavone, O-demethylations of three methoxylated flavones, and the oxidation of 4'-hydroxyflavone to 3',4'-dihydroxyflavone.The effects of anti-CYP2A6 IgG and chemical P450 inhibitors suggested that different P450 enzymes, as well as CYP2A6, catalysed oxidation of these flavonoids at different positions by liver microsomes.These studies suggest that CYP2A6 catalyses flavone 4'- and 3'-hydroxylations in human liver microsomes and that other P450 enzymes have different roles in oxidizing these flavonoids.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tsutomu Shimada
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan.,Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
5
|
Shimada T, Nagayoshi H, Murayama N, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP. Liquid chromatography-tandem mass spectrometry analysis of oxidation of 2'-, 3'-, 4'- and 6-hydroxyflavanones by human cytochrome P450 enzymes. Xenobiotica 2021; 51:139-154. [PMID: 33047997 PMCID: PMC7875482 DOI: 10.1080/00498254.2020.1836433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
2'-Hydroxyflavanone (2'OHFva), 3'OHFva, 4'OHFva, and 6OHFva, the major oxidative products of flavanone by human cytochrome P450 (P450, CYP) enzymes, were studied in regard to further oxidation by human CYP1A1, 1A2, 1B1.1, 1B1.3, and 2A6. The products formed were analyzed with LC-MS/MS and characterized by their positive ion fragmentations on mass spectrometry. Several di-hydroxylated flavanone (diOHFva) and di-hydroxylated flavone (diOHFvo) products, detected by analyzing parent ions at m/z 257 and 255, respectively, were found following incubation of these four hydroxylated flavanones with P450s. The m/z 257 products were produced at higher levels than the latter with four substrates examined. The structures of the m/z 257 products were characterized by LC-MS/MS product ion spectra, and the results suggest that 3'OHFva and 4'OHFva are further oxidized mainly at B-ring by P450s while 6OHFva oxidation was at A-ring. Different diOHFvo products (m/z 255) were also characterized by LC-MS/MS, and the results suggested that most of these diOHFvo products were formed through oxidation or desaturation of the diOHFva products (m/z 257) by P450s. Only when 4'OHFva (m/z 241) was used as a substrate, formation of 4'OHFvo (m/z 239) was detected, indicating that diOHFvo might also be formed through oxidation of 4'OHFvo by P450s. Finally, our results indicated that CYP1 family enzymes were more active than CYP2A6 in catalyzing the oxidation of these four hydroxylated flavanones, and these findings were supported by molecular docking studies of these chemicals with active sites of P450 enzymes.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Haruna Nagayoshi
- Division of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
6
|
Nagayoshi H, Murayama N, Tsujino M, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP, Shimada T. Preference for O-demethylation reactions in the oxidation of 2'-, 3'-, and 4'-methoxyflavones by human cytochrome P450 enzymes. Xenobiotica 2020; 50:1158-1169. [PMID: 32312164 DOI: 10.1080/00498254.2020.1759157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
2'-, 3'-, and 4'-Methoxyflavones (MeFs) were incubated with nine forms of recombinant human cytochrome P450 (P450 or CYP) enzymes in the presence of an NADPH-generating system and the products formed were analyzed with LC-MS/MS methods.CYP1B1.1 and 1B1.3 were highly active in demethylating 4'MeF to form 4'-hydroxyflavone (rate of 5.0 nmol/min/nmol P450) and further to 3',4'-dihydroxyflavone (rates of 2.1 and 0.66 nmol/min/nmol P450, respectively). 3'MeF was found to be oxidized by P450s to m/z 239 (M-14) products (presumably 3'-hydroxyflavone) and then to 3',4'-dihydroxyflavone. P450s also catalyzed oxidation of 2'MeF to m/z 239 (M-14) and m/z 255 (M-14, M-14 + 16) products, presumably mono- and di-hydroxylated products, respectively.At least two types of ring oxidation products having m/z 269 fragments were formed, although at slower rates than the formation of mono- and di-hydroxylated products, on incubation of these MeFs with P450s; one type was products oxidized at the C-ring, having m/z 121 fragments, and the other one was the products oxidized at the A-ring (having m/z 137 fragments).Molecular docking analysis indicated the preference of interaction of O-methoxy moiety of methoxyflavones in the active site of CYP1A2.These results suggest that 2'-, 3'-, and 4'-methoxyflavones are principally demethylated by human P450s to form mono- and di-hydroxyflavones and that direct oxidation occurs in these MeFs to form mono-hydroxylated products, oxidized at the A- or B-ring of MeF.
Collapse
Affiliation(s)
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea, and
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea, and
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
7
|
Cho MA, Yoon JG, Kim V, Kim H, Lee R, Lee MG, Kim D. Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations. Biomol Ther (Seoul) 2019; 27:577-583. [PMID: 31484472 PMCID: PMC6824622 DOI: 10.4062/biomolther.2019.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Human cytochrome P450 2C9 is a highly polymorphic enzyme that is required for drug and xenobiotic metabolism. Here, we studied eleven P450 2C9 genetic variants—including three novel variants F69S, L310V, and Q324X—that were clinically identified in Korean patients. P450 2C9 variant enzymes were expressed in Escherichia coli and their bicistronic membrane fractions were prepared The CO-binding spectra were obtained for nine enzyme variants, indicating P450 holoenzymes, but not for the M02 (L90P) variant. The M11 (Q324X) variant could not be expressed due to an early nonsense mutation. LC-MS/MS analysis was performed to measure the catalytic activities of the P450 2C9 variants, using diclofenac as a substrate. Steady-state kinetic analysis revealed that the catalytic efficiency of all nine P450 2C9 variants was lower than that of the wild type P450 2C9 enzyme. The M05 (R150L) and M06 (P279T) variants showed high kcat values; however, their Km values were also high. As the M01 (F69S), M03 (R124Q), M04 (R125H), M08 (I359L), M09 (I359T), and M10 (A477T) variants exhibited higher Km and lower kcat values than that of the wild type enzyme, their catalytic efficiency decreased by approximately 50-fold compared to the wild type enzyme. Furthermore, the novel variant M07 (L310V) showed lower kcat and Km values than the wild type enzyme, which resulted in its decreased (80%) catalytic efficiency. The X-ray crystal structure of P450 2C9 revealed the presence of mutations in the residues surrounding the substrate-binding cavity. Functional characterization of these genetic variants can help understand the pharmacogenetic outcomes.
Collapse
Affiliation(s)
- Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihoon G Yoon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Park HG, Kim V, Kim H, Lee R, Cho MA, Park SW, Chun YJ, Kim D. CYP52A23 from Candida albicans and its Substrate Preference for Fatty Acid Hydroxylation. Arch Biochem Biophys 2019; 671:27-34. [PMID: 31181182 DOI: 10.1016/j.abb.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/07/2023]
Abstract
The pathogenic fungus Candida albicans contains genes encoding five fatty acid hydroxylases belonging to the CYP52 family in its genome. Our previous study reported that CYP52A21 demonstrated typical omega-hydroxylation of lauric acid (Kim D, Cryle MJ, De Voss JJ, Ortiz de Montellano PR (2007) Arch Biochem Biophys 464, 213-220). Functional characterization of CYP52 fatty acid hydroxylases was studied, and their selectivity for hydroxylation was analyzed. Genes for four other CYP52 members (CYP52A22, CYP52A23, CYP52A24, and CYP52C3) from C. albicans were cloned, and their recombinant enzymes were expressed in Escherichia coli. CO-binding spectral analyses showed that the functional P450 holoenzyme was obtained only in CYP52A23, while no holoenzyme peak was observed in the other three CYP52 enzymes. Spectral change of the type II binding was observed in purified CYP52A23 when titrated with fatty acids but none was observed with alkanes. The gas chromatography-mass spectrometry (GC-MS) analysis revealed that CYP52A23 predominantly exhibited omega-hydroxylation activity during the oxidation reaction of fatty acids. Interestingly, it was found that CYP52A23 preferred longer-chain fatty acids (stearic acid and arachidic acid) for its catalytic activities while CYP52A21 preferred mid-chain fatty acids (lauric acid and mystic acid). To analyze the selectivity of fatty acids, hybrid mutagenesis of genes encoding CYP52A21 and CYP52A23 by overlap extension polymerase chain reaction was conducted. Two hybrid mutants containing the N-terminal fragments of CYP52A21 and C-terminal fragments of CYP52A23 displayed higher catalytic activity in palmitic acid and arachidic acid. These results suggested that the C-terminal part of CYP52A23 may be responsible for its preference to longer-chain fatty acids.
Collapse
Affiliation(s)
- Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Sung-Woo Park
- Division of Respiratory and Allergy, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, South Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Nagayoshi H, Murayama N, Kakimoto K, Tsujino M, Takenaka S, Katahira J, Lim YR, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Oxidation of Flavone, 5-Hydroxyflavone, and 5,7-Dihydroxyflavone to Mono-, Di-, and Tri-Hydroxyflavones by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2019; 32:1268-1280. [PMID: 30964977 DOI: 10.1021/acs.chemrestox.9b00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biologically active plant flavonoids, including 5,7-dihydroxyflavone (57diOHF, chrysin), 4',5,7-trihydroxyflavone (4'57triOHF, apigenin), and 5,6,7-trihydroxyflavone (567triOHF, baicalein), have important pharmacological and toxicological significance, e.g., antiallergic, anti-inflammatory, antioxidative, antimicrobial, and antitumorgenic properties. In order to better understand the metabolism of these flavonoids in humans, we examined the oxidation of flavone, 5-hydroxyflavone (5OHF), and 57diOHF to various products by human cytochrome P450 (P450 or CYP) and liver microsomal enzymes. Individual human P450s and liver microsomes oxidized flavone to 6-hydroxyflavone, small amounts of 5OHF, and 11 other monohydroxylated products at different rates and also produced several dihydroxylated products (including 57diOHF and 7,8-dihydroxyflavone) from flavone. We also found that 5OHF was oxidized by several P450 enzymes and human liver microsomes to 57diOHF and further to 567triOHF, but the turnover rates in these reactions were low. Interestingly, both CYP1B1.1 and 1B1.3 converted 57diOHF to 567triOHF at turnover rates (on the basis of P450 contents) of >3.0 min-1, and CYP1A1 and 1A2 produced 567triOHF at rates of 0.51 and 0.72 min-1, respectively. CYP2A13 and 2A6 catalyzed the oxidation of 57diOHF to 4'57triOHF at rates of 0.7 and 0.1 min-1, respectively. Our present results show that different P450s have individual roles in oxidizing these phytochemical flavonoids and that these reactions may cause changes in their biological and toxicological properties in mammals.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Kensaku Kakimoto
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Masaki Tsujino
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , 3-7-30 , Habikino , Osaka 583-8555 , Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - Young-Ran Lim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Donghak Kim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| |
Collapse
|
10
|
Nagayoshi H, Murayama N, Kakimoto K, Takenaka S, Katahira J, Lim YR, Kim V, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Site-specific oxidation of flavanone and flavone by cytochrome P450 2A6 in human liver microsomes. Xenobiotica 2018; 49:791-802. [PMID: 30048196 DOI: 10.1080/00498254.2018.1505064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The roles of human cytochrome P450 (P450 or CYP) 2A6 in the oxidation of flavanone [(2R)- and (2S)-enantiomers] and flavone were studied in human liver microsomes and recombinant human P450 enzymes. CYP2A6 was highly active in oxidizing flavanone to form flavone, 2'-hydroxy-, 4'-, and 6-hydroxyflavanones and in oxidizing flavone to form mono- and di-hydroxylated products, such as mono-hydroxy flavones M6, M7, and M11 and di-hydroxy flavones M3, M4, and M5. Liver microsomes prepared from human sample HH2, defective in coumarin 7-hydroxylation activity, were very inefficient in forming 2'-hydroxyflavanone from flavanone and a mono-hydroxylated product, M6, from flavone. Coumarin and anti-CYP2A6 antibodies strongly inhibited the formation of these metabolites in microsomes prepared from liver samples HH47 and 54, which were active in coumarin oxidation activities. Molecular docking analysis showed that the C2'-position of (2R)-flavanone (3.8 Å) was closer to the iron center of CYP2A6 than the C6-position (10 Å), while distances from C2' and C6 of (2S)-flavanone to the CYP2A6 were 6.91 Å and 5.42 Å, respectively. These results suggest that CYP2A6 catalyzes site-specific oxidation of (racemic) flavanone and also flavone in human liver microsomes. CYP1A2 and CYP2B6 were also found to play significant roles in some of the oxidations of these flavonoids by human liver microsomes.
Collapse
Affiliation(s)
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | | | - Shigeo Takenaka
- c Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , Habikino Osaka , Japan
| | - Jun Katahira
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| | - Young-Ran Lim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Vitchan Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Donghak Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Masayuki Komori
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| | - F Peter Guengerich
- f Department of Biochemistry Vanderbilt University School of Medicine , Nashville , Tennessee , USA
| | - Tsutomu Shimada
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| |
Collapse
|